Discussion of:

Designing Central Bank Digital Currencies

by I. Agur, A. Ari and G. Dell'Ariccia

Todd Keister Rutgers University

2nd Annual Macro-Finance Research Conference, IMF April 25, 2019

- Paper studies the *design features* of a CBDC
 - should it be cash-like (very anonymous)?
 - should it be *deposit-like* (more secure)?
 - or somewhere in between?
 - what interest rate (if any) would it pay?
- The model has many elements
 - network effects, externalities from crime, imperfect competition ...
- My plan: focus on the simplest version of the model
 - highlight a couple of results I think are important (and not obvious)
 - raise two questions for discussion

• Set $\beta = \gamma = \eta = 0$

- no externalities from cash usage or bank lending
- no network externalities
- A payment instrument has characteristics $x \in [0,1]$
 - reflects degree of anonymity, security, etc.
- To begin, there are only two options:
 - bank deposit has x = 0
 - cash has x = 1

Demand for payment instruments:

Agent *i* has ideal characteristic $\alpha_i \in [0,1]$

- Result: there is a cutoff $\bar{\alpha}$ such that:
 - agents with $\alpha_i < \bar{\alpha}$ use deposits (and the others use cash)
 - $\bar{\alpha}$ is an increasing function of the interest rate r_d

Supply of payment instruments:

- Cash: available in any amount with a fixed real return (= 0)
- Deposits: created when banks make loans
 - r_l is decreasing in the quantity of loans (diminishing returns)
 - $r_d = r_l$ (competition in banking)

Equilibrium:

- Market clearing: $\alpha(r_d) = L(r_d)$
- The equilibrium cutoff satisfies:

An externality

- Suppose we compare:
 - equilibrium cutoff $\bar{\alpha}$
 - the welfare-maximizing cutoff α^*
- Result: $\bar{\alpha} > \alpha^*$

Is the equilibrium cutoff optimal?

No!

- too many deposits in equilibrium (and too much investment)
- Reason: an externality (of sorts)
 - when I choose deposits over cash, I drive down the interest rate for all agents
 - borrowers benefit, of course, but with $\gamma = 0$ they do not count
- Demand for bank deposits as a payment instrument ...
 - ... leads to too much lending, investment in this setting

Interest on money

- There are many ways this externality could be corrected
 - but I want to focus on a particular approach
- Suppose we could pay interest on cash
 - financed by a lump-sum tax
- Effect: $r_{cash} > 0$ induces some agents to switch from deposits

Optimal policy:

• Set r_{cash} so that $\bar{\alpha}(r_{cash}) = \alpha^* \Rightarrow$ efficient allocation

A CBDC offers two potential benefits in this environment:

1. A new payment instrument with $0 < x_i < 1$

• reduces the total "mismatch costs" $|x_i - \alpha_i|$

"... the potential social value of a CBDC comes from the demand for payments instruments that can blend features of cash and deposits" (p.2)

- 2. A new tool for offsetting externalities
 - even if $\theta = 1$ (so CBDC ~ cash), setting $r_{cbdc} > 0$ can raise welfare
- Optimal CBDC design takes advantage of both benefits

Introducing other concerns

- The paper also studies:
 - $\beta > 0$: negative externalities from cash usage (crime)
 - γ > 0 : positive externalities from deposits (~benefits from firms paying less to borrow)
 - $\eta > 0$: network effects (critical mass of users is required to keep a payment medium viable)
 - $r_d < r_{loan}$: imperfect competition
- These changes affect the optimal design of a CBDC
 - might want $r_{cbdc} < 0$, for example
- But not the basic insights. Optimal design is still about:
 - 1. providing better payment "coverage"
 - 2. offsetting externalities that cause too much/little use of some instrument

- Nice, clean model of CBDC as a new payment instrument
- Interesting implications:
 - 1. a CBDC cannot complete only with cash
 - if anyone uses it, some agents will shift out of bank deposits
 - 2. a shift out of bank deposits might be a good thing!
 - the demand for deposits as a payment instrument may push lending rates too low
- Model emphasizes the importance of r_{cbdc} as a policy tool
 - if chosen appropriately, a CBDC is always desirable
 - CBs should think twice before deciding to set $r_{cbdc} = 0$

Two questions

Q1) Why the central bank?

- Banks provide $x_i = 0$ and central bank can create $x_i \in (0,1]$.
- Why can't private markets/institutions provide $x_i > 0$?
- If some people are concerned about privacy/anonymity ...
 - don't want my bank to observe too much information
- ... it seems like there could be private-sector solutions
 - example: stored value cards not linked to my identity
 - or perhaps "First National Bank Coin"
- Want to understand well the rationale for the "CB" in CBDC
 - > perhaps: private solutions would not get optimal interest rate
 - \Rightarrow central bank wants to crowd them out?

Q2) How many?

- Might it be optimal to have multiple types of CBDC?
 - with different pairs of design characteristics
 - "Fedcoin" and "Fedcoin Cash"?

- Suppose there is a fixed cost of creating a CBDC type
 - perhaps an operating cost as well
- Could this framework provide insight into the optimal number of CBDC types?