Discussion of:

CBDC and Financial Stability

by T. Ahnert, P. Hoffman, A. Leonello, and D. Porcellacchia

Todd Keister Rutgers University

2nd Conference on the Economics of CBDC November 17, 2023

Summary

Q: How would a CBDC affect financial stability?

- clearly an important question; often raised in policy discussions
- answer is not at all obvious; many moving parts
- Set up a model where CBDC provides depositors with a better option ...
 - during times of stress \rightarrow changes cost of withdrawing direct
 - in normal times \rightarrow changes the equilibrium deposit contract indirect
 - both channels strike me as relevant, first-order concerns
- Show: CBDC has competing effects on fragility
 - the direct effect *increases* fragility
 - the indirect effect decreases fragility (in the relevant region)
 - overall: under some conditions, effect on fragility is U-shaped

▶ as CBDC is more attractive, fragility first decreases then increases

- These are interesting results with clear policy implications
 - paying interest on CBDC is good, but not too much
 - if CBDC interest rate needs to be high for some reason, holding limits can reduce the attractiveness of withdrawing

(main)

My discussion

- 1. Liquidity and the deposit contract
- 2. What do depositors run into?
- 3. Idiosyncratic vs. systemic runs

1. Liquidity and the deposit contract

- If depositors have a better outside option (in normal times) ...
 - how should we expect the deposit contract to change?
- Alternative model: Diamond-Dybvig preferences

 $\left\{ \begin{array}{c} u(c_1) \\ u(c_2) \end{array} \right\} \text{ if depositor is } \left\{ \begin{array}{c} \text{impatient} & (\text{prob.} = \pi) \\ \text{patient} & (\text{prob.} = 1 - \pi) \end{array} \right\}$

Monopolist bank offers the contract (r_1, r_2) that solves:

> $\max R(1-\pi r_1) - (1-\pi)r_2$ s.t. $\pi u(r_1) + (1 - \pi)u(r_2) \ge \omega^2$

FOC: $u'(r_1) = Ru'(r_2)$

If depositors run, first π to arrive receive r_1

sequential service

- then the bank is placed in resolution
- remaining impatient depositors receive \hat{r}_1 at t = 1remaining patient depositors receive \hat{r}_2 at t = 2 expost efficient

efficient

- If other depositors run (and I am patient), my choices are:
 - run: receive r_1 if I arrive early; otherwise receive \hat{r}_2 in resolution
 - wait: receive \hat{r}_2 for certain \Rightarrow bank is fragile if $r_1 \ge \hat{r}_2$
- Q: How does a better outside option affect r_1 relative to \hat{r}_2 ?

Results:

- if $u(\cdot)$ is CRRA, then r_1 and r_2 increase in proportion
 - liquidity provision is unchanged
- if bankers take dividends at t = 0, $\frac{r_2}{r_2}$ is unchanged

if bankers take dividends at t = 2 (if no run), $\frac{r_2}{\hat{r}_2}$ increases

indirect effect is absent

indirect effect is reversed

- These results follow Xiao (2023)
 - "Revisiting Banking Competition and Fragility: a 'Too Big to Save' Perspective"
- Q: Why does the paper give a different prediction?
- In the paper, depositors do not value liquidity (at the margin)
 - implicitly: depositors value the option to withdraw 1 in early period
 - but do not value (at all) the ability to withdraw more than 1
- A "better deal" for depositors means $r_2 \uparrow$ (and r_1 unchanged)
 - so liquidity provision *decreases* \Rightarrow fragility decreases (the indirect effect)
- In the alternative model, liquidity *is* valuable to depositors
 - when they get a better deal, liquidity provision is unchanged (CRRA case)
 - effect on fragility comes only through bank profit/capital

Q: Which model is a better guide for policy?

- Approach in the paper seems quite special
 - which clearly helps with tractability, transparency, but ...
- Can a value for liquidity be incorporated into this model?
 - while still determining the probability q^* of a run?
 - there is Goldstein-Pauzner (2005), but ... it is messy
 - is there a global-games version of the alternative model I described?
 - or perhaps follow the approach in Mitkov (2023) "Private Sunspots in Games of Coordinated Attack"?
- I don't know what approach would be best ...
 - but it seems worth giving some serious thought

My discussion

- 1. Liquidity and the deposit contract
- 2. What do depositors run into?
- 3. Idiosyncratic vs. systemic runs

2. What do depositors run into?

- In the model (w/o CBDC), withdrawing depositors hold currency
- In practice, what do depositors run into?
 - idiosyncratic run \rightarrow other banks (I'll come back to this)
 - systemic run \rightarrow anything they can find
 - foreign currencies/foreign banks, real estate, other durables, bitcoin, etc.
- Effect: exchange rate \downarrow , asset prices $\uparrow \Rightarrow$ creates other problems
- A run into CBDC may be less costly
 - > no pressure on exchange rate, asset prices; Brunnermeier-Niepelt neutrality
- If these other options & costs could be captured in the model:
 - > perhaps a CBDC would be desirable even if it increases fragility ...
 - ... because it makes a run *less costly*

My discussion

- 1. Liquidity and the deposit contract
- 2. What do depositors run into?
- 3. Idiosyncratic vs. systemic runs

3. Idiosyncratic runs

- Model is about systemic runs into currency (I think)
 - idiosyncratic runs into other banks seem quite different
 - but ... might the same effects be relevant?
- Imagine a setting with large and small banks
 - ▶ large banks have strong market power, offer low (r_1, r_2)
 - small banks have less market power; only available to some depositors
 - runs occur only on small banks (into large banks)
- Suppose CBDC serves as an outside option to large banks
 - ▶ in the spirit of Chiu et al. (2023) \Rightarrow large banks offer a better deal
- Then depositors in small banks have a better outside option ...
 - in times of stress (direct effect)
 and in normal times (indirect effect)
 Can we apply the model to this case as well?

Bottom line

- An interesting paper on a (clearly) important topic
- I want to think more about the underlying source of liquidity demand
 - and how it varies with depositors' outside option
- The extensions of the model are interesting
 - there might be even more the authors can do