Liquidity Regulation and the Implementation of Monetary Policy

Morten Bech
Bank for International Settlements

Todd Keister
Rutgers University, Paris School of Economics

December 14, 2015

The views expressed herein are those of the authors and do not reflect the views of the Bank for International Settlements.
Background

- Basel III introduces a framework for liquidity regulation
 - objective: ensure banks hold a more liquid portfolio of assets, limit maturity mismatch

- Two components:
 - Liquidity Coverage Ratio (LCR)
 - establishes minimum holding of high-quality liquid assets
 - Net Stable Funding Ratio (NSFR)
 - establishes minimum amount of funding from “stable” sources

- Implementation:
 - LCR: 3-year phase-in began in Jan 2015
 - NSFR: begins in Jan 2018
Definition

\[LCR = \frac{\text{Stock of unencumbered high-quality liquid assets}}{\text{Net cash outflows in a 30-day stress scenario}} = \frac{HQLA}{NCOF} \]

- **HQLA**: cash, reserves, govt. bonds, certain other securities

- **NCOF Scenario**: partial loss of retail deposits, significant loss of wholesale funding, contractual outflows from a 3-notch ratings downgrade, and substantial calls on off-balance sheet exposures

- Requirement:

\[HQLA \geq NCOF \]

or

\[LCR \geq 100\% \]
Question

- How might the LCR affect monetary policy *implementation*?
 - that is, the process by which a central bank steers market interest rate(s) toward some target

- Many central banks target the interest rate on interbank loans...
 - of reserve balances (a high-quality liquid asset)

- If the LCR changes the demand for such loans,
 - it seems likely to change the structure of market interest rates

- Want to understand:
 - how the LCR is likely to affect interbank interest rates
 - whether these effects could, in some circumstances, impair a CB’s ability to move the interest rate to target
What we do

- Develop a simple model to analyze this issue
 - goal is to identify *possible side effects* of the LCR

- Begin with a standard model of interbank lending
 - introduce an LCR requirement
 - ask: how does it change equilibrium interest rates?

- Results:
 - tends to push the overnight rate **down** and term rates **up**
 - effect depends critically on the **form** of central bank operations
 - bonds vs. other assets; counterparties; purchases vs. repos

- Conclusion:
 - LCR may make implementing monetary policy more challenging
The Model
A baseline model (no LCR)

- Three stages: $t = 0,1,2$
- Continuum of banks ($i \in [0,1]$), a central bank, and others
 - each begins with a balance sheet

Bank i

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loans L_i^0</td>
<td>Deposits D_i^0</td>
</tr>
<tr>
<td>Bonds B_i^0</td>
<td>Equity E_i^0</td>
</tr>
<tr>
<td>Reserves R_i^0</td>
<td></td>
</tr>
</tbody>
</table>

Central Bank

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loans L_{0CB}</td>
<td>Reserves R_0</td>
</tr>
<tr>
<td>Bonds B_{0CB}</td>
<td></td>
</tr>
</tbody>
</table>

Other investors

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loans L_0^h</td>
<td>Equity E_0^h</td>
</tr>
<tr>
<td>Bonds B_0^h</td>
<td></td>
</tr>
<tr>
<td>Deposits D_0</td>
<td></td>
</tr>
</tbody>
</table>
Timeline:

\[t = 0 \]
\[t = 1 \]
\[t = 2 \]

- Open market operations
- Interbank market
- Payment shocks
- Standing facilities open

Bank \(i \)

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loans (L^i_1)</td>
<td>Deposits (D^i_1 - \varepsilon^i)</td>
</tr>
<tr>
<td>Bonds (B^i_1)</td>
<td>Borrowing (\Delta^i + X^i)</td>
</tr>
<tr>
<td>Reserves (R^i_1 + \Delta^i - \varepsilon^i + X^i)</td>
<td>Equity (E^i_0)</td>
</tr>
</tbody>
</table>
- Banks are risk neutral
- Must satisfy a reserve requirement:

\[R_1^i + \Delta^i - \varepsilon^i + X^i \geq K^i \]

- Profit:

\[
\pi^i(\varepsilon^i) = r_L L_2^i + r_B B_2^i - r_D D_2^i + r_K K_i^i \\
- r\Delta^i + r_R (R_1^i + \Delta^i - \varepsilon^i + X^i - K_i) - r_X X^i
\]

where
- \(r_R \) = interest rate at CB’s deposit facility (excess reserves)
- \(r_X > r_R \) is the rate at the CB’s lending facility
Demand for interbank loans

- Using the reserve requirement:

\[R^i_1 + \Delta^i - \varepsilon^i + X^i \geq K^i \]

- where

\[\varepsilon_K^i \equiv R^i + \Delta^i - K^i \]

- Bank \(i \) will choose \(\Delta^i \) so that:

\[r = r_R \left(\text{prob}[\varepsilon^i < \varepsilon_K^i] \right) + r_X \left(\text{prob}[\varepsilon^i > \varepsilon_K^i] \right) \]
Equilibrium

- Net interbank lending = 0 \Rightarrow \varepsilon_K^* = R_1 - K

\[r^* = r_R(\text{prob}[\varepsilon < \varepsilon_K^*]) + r_X(\text{prob}[\varepsilon > \varepsilon_K^*]) \]

Notes:

- \(r^* \) depends only on aggregate excess reserves
- distribution of \(R_1^i \) and other balance sheet items is irrelevant
- implication: effect of an OMO depends only on size of the operation
Liquidity Requirements
Expand the model to include two interbank markets

- interpret as overnight vs. term loans
- both markets open at the same time

Bank i

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loans L_1^i</td>
<td>Deposits $D_1^i - \varepsilon^i$</td>
</tr>
<tr>
<td>Bonds B_1^i</td>
<td>Borrowing $\Delta^i + \Delta_T^i + X^i$</td>
</tr>
<tr>
<td>Reserves $R_1^i + \Delta^i + \Delta_T^i - \varepsilon^i + X^i$</td>
<td>Equity E_0^i</td>
</tr>
</tbody>
</table>
Introducing the LCR requirement

- In the model:
 - bonds and reserves are high-quality liquid assets
 - loans = all other assets

- Requirement:

 \[LCR = \frac{B^i + R^i + \Delta^i + \Delta_T^i - \varepsilon^i + X^i}{\theta_D(D^i_1 - \varepsilon^i) + \Delta^i} \geq 1 \quad \left\{ = \frac{HQLA}{NCOF} \right\} \]

- Runoff rates for different types of liabilities:
 - deposits: \(\theta_D \) (3%, 5%, or 10%)
 - overnight borrowing: 100%
 (paper: two markets with \(\theta_a \neq \theta_b \))
 - term borrowing: 0%
 - borrowing from central bank: 0%
 (see paper for \(\theta_X > 0 \))
Repeating:

\[
\frac{B^i + R^i + \Delta^i + \Delta^i_T - \varepsilon^i + X^i}{\theta_D (D^i - \varepsilon^i) + \Delta^i} \geq 1
\]

DW borrowing for LCR purposes:

where

\[
\varepsilon_C^i \equiv \frac{B^i + R^i + \Delta^i_T - \theta_D D^i}{1-\theta_D} \\
\text{to meet LCR (slope }= 1 - \theta_D) \\
\text{notice: the two } \Delta^i \text{ terms cancel out}
In equilibrium:

$$r^* = r_R \left(\text{prob}[\varepsilon < \hat{\varepsilon}^*] \right) + r_X \text{prob}[\varepsilon > \hat{\varepsilon}^*]$$

$$r_T^* = r^* + (r_X - r_R) \text{prob}[\varepsilon^*_C < \varepsilon < \hat{\varepsilon}^*]$$

\(\hat{\varepsilon}^* > \varepsilon^*_K \Rightarrow\) overnight rate lower

\(\hat{\varepsilon}^* > \varepsilon^*_K \Rightarrow\) a premium emerges
Results

- If the LCR is a binding concern in some states of nature (that is, if $\varepsilon_C^* < \varepsilon_K^*$):
 1. the overnight rate r^* is **lower** than in the standard model
 2. the term rate r_T^* is **higher** than in the standard model
 \[\Rightarrow \text{difference is a regulatory premium} \]

- In addition, open market operations change banks’ LCR position (that is, change $B_1, R_1, D_1 \Rightarrow \text{change} \, \varepsilon_C^*$)
 - direction, size of change depend on how operation is structured
 \[\Rightarrow \text{effect of an operation on } (r^*, r_T^*) \text{ depends on how it is structured} \]
 - next: examine OMOs in detail
Open Market Operations
Balance sheet effects of an OMO

- Central bank chooses size of purchases z_L, z_B

Central Bank

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loans $L_0^{CB} + z_L$</td>
<td>Reserves $R_0 + z$</td>
</tr>
<tr>
<td>Bonds $B_0^{CB} + z_B$</td>
<td></td>
</tr>
</tbody>
</table>

- Effect on bank balance sheets depends on counterparites (α_L, α_B)

Banking system

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loans $L_0 - \alpha_L z_L$</td>
<td>Deposits $D_0 + (1 - \alpha_L)z_L + (1 - \alpha_B)z_B$</td>
</tr>
<tr>
<td>Bonds $B_0 - \alpha_B z_B$</td>
<td>Equity E_0</td>
</tr>
<tr>
<td>Reserves $R_0 + z$</td>
<td></td>
</tr>
</tbody>
</table>

\[= R_1\]
OMOs (1): Purchases of HQLA from banks

- Suppose $z_B > 0 = z_L$ and $\alpha_B = 1$

- Operation leaves the LCR of the banking system unchanged:

\[
\begin{align*}
\text{Assets} & \quad \text{Liabilities} \\
\text{Loans} & \quad L_0 & \text{Deposits} & \quad D_0 \\
\text{Bonds} & \quad B_0 - z & \text{Equity} & \quad E_0 \\
\text{Reserves} & \quad R_0 + z
\end{align*}
\]

\[
\Rightarrow LCR_1 = \frac{B_0 - z + R_0 + z}{\theta_D D} = LCR_0
\]

- the likelihood of a bank violating its LCR constraint is unchanged
- but the likelihood of violating its reserve requirement falls
 - \Rightarrow regulatory premium must increase
Start from a situation where the LCR is never a binding concern:

When central bank buys bonds:

- same r^* as with no LCR
- no premium

- r^* falls more than in the standard model
 - a premium arises
Effect of open market operations on equilibrium interest rates

assuming initial LCR of the banking system is well above 100%

As reserves increase, eventually LCR is a binding concern in some states
If the initial LCR of the banking system is lower:

- Results:
 - adding reserves tends to create a term premium
 - overnight rate becomes highly responsive to z
 - term rate becomes unresponsive to z
OMOs (2): Purchases of non-HQLA from banks

- Suppose $z_L > 0 = z_B$ and $\alpha_L = 1$

- This operation raises the LCR of the banking system:

\[
\begin{array}{c|c}
\text{Assets} & \text{Liabilities} \\
\hline
\text{Loans} & L_0 - z \\
\text{Bonds} & B_0 \\
\text{Reserves} & R_0 + z \\
\end{array}
\begin{array}{c}
\text{Deposits} & D_0 \\
\text{Equity} & E_0 \\
\end{array}
\Rightarrow LCR_1 = \frac{B_0 + R_0 + z}{\theta_D D_0} > LCR_0
\]

- likelihood of a bank violating its reserve requirement falls (as before)

- likelihood of violating its LCR requirement falls by more
 - \Rightarrow regulatory premium tends to decrease
Effect of open market operations on equilibrium interest rates:

Results:
- Draining reserves tends to create a term premium.
- Overnight rate becomes less responsive to z.
- Term rate becomes (slightly) more responsive to z.

Exactly opposite to previous case.
OMOs (3): Purchases from non-banks

- Now suppose $\alpha_B = \alpha_L = 0$

- Operation raises the LCR of the banking system:

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loans L_0</td>
<td>Deposits $D_0 + z$</td>
</tr>
<tr>
<td>Bonds B_0</td>
<td>Equity E_0</td>
</tr>
<tr>
<td>Reserves $R_0 + z$</td>
<td>Deposits $D_0 + z$</td>
</tr>
</tbody>
</table>

⇒ $LCR_1 = \frac{B_0 + R_0 + z}{\theta_D(D_0 + z)} > LCR_0$

- likelihood of a bank violating both requirements falls at the same rate

- relative importance depends on distribution of payment shock

⇒ equilibrium term premium may increase or decrease
Effects of OMOs are a hybrid of the two previous cases:

- Higher initial LCR
- Lower initial LCR
Summarizing the results

- An LCR pushes the overnight rate down and term rates up
 - a regulatory premium emerges on loans that improve bank’s LCR

- The effects of an open market operation depend on the details (which were irrelevant in the standard model)
 - some of these details \((\alpha_L, \alpha_C)\) are outside of central bank’s control

- Effects are stronger:
 - with repos/collateralized loans than with outright purchases/sales
 - if runoff rate on CB loans \(\theta_X\) is positive

⇒ Implementing monetary policy may become significantly more difficult when LCR is fully in effect
Possible adjustments

- Should a CB adjust its framework? If so, how?
 - no definitive answers here
 - but the model highlights some considerations and tradeoffs

- Target rate: overnight rate vs. term (say, 3 month)
 - if regulatory premium is variable, choice becomes more important
 - and makes a stronger argument for a term target?

- Type of operation
 - If targeting the overnight rate, HQLA with banks may work best
 - If targeting a term rate, non-HQLA or with non-banks may be more effective
Could take steps to mitigate monetary policy effects of LCR

- set runoff rate for CB loans (θ_X) to zero
- introduce a bond-lending facility
 - aim to provide “LCR liquidity” separately from “reserve liquidity”
- create a committed liquidity facility (CLF)
 - sell committed CB credit lines that count as HQLA (Australia)

Note: each of these may undermine objectives of the regulation

- want to incentive banks to hold more HQLA
- but also want to ease any HQLA shortages that arise

⇒ possible tension between financial stability and monetary policy
Determining the best approach requires a broader model

- need to integrate our analysis with the objectives of the regulation

General message:

- Central banks will likely need to pay attention to the LCR when implementing monetary policy
 - need to monitor LCR conditions in same way as reserve conditions
 - and design their operations and facilities with the LCR in mind

More work is needed:

- tailoring the analysis to different environments, operating regimes
- including benefits as well as costs of liquidity regulation
- studying how other new regulations interact with the effects here
Extra Materials
OMOs (4): Repos of HQLA with banks

- Next, return to first case: $z_B > 0 = z_L$ and $\alpha_B = 1$
 - but now CB does repo transaction rather than outright purchase

- Operation decreases the LCR of the banking system:

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loans L_0</td>
<td>Deposits D_0</td>
</tr>
<tr>
<td>Bonds B_0</td>
<td>CB repo z</td>
</tr>
<tr>
<td>- encumb. $\frac{z}{1-h}$</td>
<td></td>
</tr>
<tr>
<td>Reserves $R_0 + z$</td>
<td>Equity E_0</td>
</tr>
</tbody>
</table>

$\Rightarrow LCR_1 = \frac{B_0 + R_0 - \frac{h}{1-h} z}{\theta_D D_0} < LCR_0$

- If haircut (h) is zero, effect is same as outright purchases
 - but with a positive haircut ...
Effect of open market operations via repos (using HQLA)

Term premium is larger with repos than with outright purchases

- difference is increasing in the size of the haircut
Alternate case: $\theta_X > \theta_D$

- Recall
\[
LCR = \frac{B + R + \Delta + \Delta_T - \varepsilon + X}{\theta_D(D - \varepsilon) + \Delta + \theta_X X} \geq 1
\]

- LCR rules allow local supervisors to set $\theta_X = 0$ (our baseline case) ...
 - ... or higher
 - the original LCR rules (in 2010) required $\theta_X \geq 25$

- Analysis above applies to any $\theta_X < \theta_D$

- For $\theta_X < \theta_D$...
When $\theta_X > \theta_D$

In equilibrium:

$$r^* = r_R \left(\text{prob}[\varepsilon < \varepsilon_K] + \text{prob}[\varepsilon > \hat{\varepsilon}] \right) + r_X \text{prob}[\varepsilon_K < \varepsilon < \hat{\varepsilon}]$$

$$r_T = r^* + \frac{r_X - r_R}{1 - \theta_X} \text{prob}[\varepsilon > \hat{\varepsilon}]$$

same basic pattern ...
When $\theta_X > \theta_D$

- Effect of open market operations on equilibrium interest rates
- assuming initial LCR of the banking system is 100%

Effects highlighted above become stronger as θ_X increases

... but effects are magnified
When $\theta_X > \theta_D$

- If θ_X is large enough, the term interest rate can rise above r_X:

- because 1 of term funding can save a bank from borrowing

\[
\frac{1}{1 - \theta_X} > 1
\]

from the discount window
Shadow banks

- The LCR requirement applies only to (some) commercial banks

- If $r_T^* > r^*$, profit opportunity for anyone not subject to the LCR:
 - lend at the term rate,
 - borrow at the overnight rate and roll over the loan each day

- Doing so may be costly
 - it raises institution’s leverage, funding costs

- Let $F = \text{net activity by non-banks in these markets}$
 - assume balance sheet cost $\phi(F)$ is weakly increasing

- No arbitrage $\Rightarrow \phi(F^*) = r_T^* - r^*$
Market clearing conditions become:

\[\int_0^1 \Delta^i di = F \quad \text{and} \quad \int_0^1 \Delta_T^i di = -F \]

Analysis above was based on \(F = 0 \)
Lending by shadow banks:

- Mitigates the term premium ...
 - by moving maturity transformation outside of commercial banks
- OMOs have less impact on term premium, but ... will change F^*

![Graph showing $r_T^* - r^*$ vs. F with F^* indicating the point where $\phi(F)$ intersects the vertical axis.]

 Raises financial stability concerns?