Discussion of:

Financial Risk Capacity

by Saki Bigio

Todd Keister
Federal Reserve Bank of New York
and Rutgers University

5th ITAM Summer Camp in Macroeconomics
August 2012
The question

- Why do economies recover slowly from a financial crisis?

- Baseline case: \(K_{t+1} = I_t + (1 - \delta) K_t \)

 where \(I_t = \theta_t S_t \)

 and \(\theta_t = \begin{cases} 1 & \text{normal times} \\ 0 & \text{crisis} \end{cases} \)

- When crisis ends, MP\(_K\) will be high \(\Rightarrow\) strong incentive to invest

 \(\Rightarrow\) rapid growth
One view: Intermediaries are undercapitalized

- Suppose investment is constrained by capacity of financial sector
 - capacity depends on equity

- Losses associated with crisis reduce bank capital dramatically
 \Rightarrow investment is choked off even if MP_K is high

But ... this story only moves the puzzle to the financial sector

- If MP_K is high, intermediation should be very profitable
 - shadow value of equity should be high

 - why doesn’t new equity flow into these intermediaries?
This paper

• Maybe intermediation is not so profitable in the wake of a crisis
 – when capacity falls, intermediation becomes less efficient
 – this fall offsets the high MP_K

• Mechanism: an adverse selection problem
 – when \(\begin{cases}
 \text{fewer loans made} \\
 \text{less capital purchased}
\end{cases} \), average quality is lower
 – this could reduce profitability of intermediation
 ⇒ no incentive to invest in intermediaries, so capacity remains low
 ⇒ investment and growth rate are lower than before crisis
• Paper lays out a rich, dynamic model
 – intermediaries necessarily take on risk
 – bad aggregate shock \rightarrow fall in their equity
 – lower capacity \rightarrow adverse selection problem worsens

• Uses the model to generate illustrative examples, examine policy interventions
 – interesting dynamics as economy slowly grows out of the problem

• Nice contribution of both ideas and methodology
 – would like to understand the effects at work better ...
A simple model

- Savers have machines of varying quality
 - machine of type ω will become $\lambda(\omega)$ machines after depreciation
 - ω is private information
 - chooses which units to sell in pooling market at price p
 - unsold units can be consumed

$$\max_{\{\omega^\ast\}} p\omega^\ast + \int_{\omega^\ast}^1 \lambda(\omega) \, d\omega$$

FOC:

$$p = \lambda(\omega^\ast)$$

-6-
• Entrepreneurs buy depreciated machines and produce

\[
\max_{\{k\}} \quad f(k) - qk
\]

FOC:

\[q = f'(k) \]
• Banks intermediate
 − buy machines from capital owners at price p
 − machines depreciate while in bank’s hands
 − sell to entrepreneurs, receiving $q\lambda(\omega)$
 − scale constrained by equity

$$Q \leq \psi n$$

• ROE = profit per unit of intermediation * leverage

$$= (qE[\lambda(\omega) \mid \omega \leq \omega^*] - p) \ast \psi$$
• Crisis: negative shock to bank equity
 - less intermediation, investment $\rightarrow k$ falls $\rightarrow q$ rises
 \[
 ROE = (qE [\lambda (\omega) \mid \omega \leq \omega^*] - p) \ast \psi
 \]

• Suppose there were no adverse selection problem
 - $\lambda (\omega) = 1$ for all $\omega \Rightarrow p = 1$
 \[
 ROE = (q - 1) \ast \psi
 \]

• If ψ fixed, ROE rises \Rightarrow banks should attract more equity
 - rapid recovery
• With λ increasing in ω:

$$ROE = \left(q \cdot E[\lambda(\omega) | \omega \leq \omega^*] - p \right) \cdot \psi$$

• Net effect depends on shape of λ

 – and on behavior of leverage ψ across states

• Paper shows the resulting behavior can be quite rich

 – ROE can be non-monotone in ω^*

• Can generate slow recapitalization, recovery
Comments
(1) Adverse selection and investment

- There is much discussion of adverse selection in asset markets
 - some mortgage-related assets were bad; difficult to tell which ones
 - prices fall; quantity of trade is low

- The issue there is trade in *existing* assets (linked to past loans)

- Story here is more about new investment
 - saving is channelled into machines that get used in production
 - how important is adverse selection is this context?
• Suppose a bank is going to lend less (because of funding constraints)

• One option: charge a higher interest rate
 – will attract a worse pool of borrowers

• Another option: tighten lending standards
 – leave rates unchanged; stop making certain types of loans
 – average quality of loan would rise (and average rate would fall)

• To what extent can banks get around this adverse selection problem?
• The threat of adverse selection may affect bank behavior
 – could explain why banks raise lending standards instead of rates

• What are the implications for the return on bank equity?
 – not making any profitable, risky loans may be costly

• Could this alternate mechanism lead to the same outcome?
 – some implications are different
 – but perhaps could explain the same phenomenon
A related point

- In the model, average \(\{ \frac{\text{loan capital}}{\text{capital}} \} \) quality falls after a crisis
 - perhaps true for assets traded in some markets

- Story people usually tell about banks is the opposite
 - lending standards were low during the boom years
 - become much tighter during/after the crisis

\(\Rightarrow \) average loan quality goes up

- Is this a model of banks or market-based intermediation?
 - could it be modified to be a model of banks?
(2) The function $\lambda(\omega, \phi)$

- Much seems to depend on the shape of this function

- How can we think about what shapes are “reasonable”?
 - probably difficult to calibrate to data, but ...

- How might λ vary across countries, over time?
 - related to structure of financial system? regulation?

- In what situations would we expect the adverse selection effects to be stronger/weaker?
 - when should we expect slower/faster recovery?
Conclusion

- Very nice paper

- Would like to think more about adverse selection in intermediation
 - are banks different from other forms of intermediation?
 - does it matter?

- Would like to understand better how \(\lambda \) affects outcomes
 - are these effects always important?
 - or only in certain situations?