Discussion of:

The Coming Battle of Digital Currencies

by Lin William Cong and Simon Mayer

Todd Keister Rutgers University

BEAR Research Conference February 27, 2023

Big question

- How will the international monetary system evolve in the digital age?
 - what role will cryptocurrencies play? CBDCs?
 - how will the transition to this future play out?
- Focus on a dynamic game between two countries
 - each currently issues a (non-digital) currency
 - pre-crypto: equilibrium where each has some "market share"
 - country A is dominant (for fundamental reasons)
- Study effect of two changes:
 - competition from a new type of (crypto) currency
 - becomes more useful over time through adoption
 - countries have the option to issue CBDC
 - requires costly effort; increases usefulness of their currency

Some interesting answers

- The future is digital (by assumption)
 - the crypto currency is useful; will have (growing) market share
 - both countries will eventually introduce CBDC
- Interesting patterns along the *transition* to this digital future
 - growth of cryptocurrency has asymmetric effects on the two currencies
 - always decreases market share of A
 - but can increase market share of B (for a while)
 - asymmetric incentives to introduce CBDC
 - "pecking order": country *B* may move faster or slower than country *A*
 - introduction of any CBDC decreases the value of the cryptocurrency
 - but the size of the effect may be larger for country B
 - dynamics are non-linear, and often non-monotone

Outline

Sketch the model

- without CBDC
- with CBDC
- aim: understand source of the asymmetries, results

Comments:

- 1. CBDC and intermediation
- 2. synthetic vs. real
- 3. monetary policy
- 4. broader competition

2-period OLG

- Representative household has endowment 1 when young
 - only desires consumption when old
 - saves by holding a portfolio of three currencies: A, B, and C

 $m_t^A + m_t^B + m_1^C = 1$

• Utility: $U = c_{t+1} + \alpha v(m_t^A) + \beta v(m_t^B) + \gamma_t v(m_t^C)$

$$c_{t+1} = \rho_t^A m_t^A + \rho_t^B m_t^B + \rho_t^C m_t^C$$

equilibrium returns reflect inflation, etc. depend on $\boldsymbol{m} = (m_t^A, m_t^B, m_t^C)$

- Asymmetry: ρ_t^A and ρ_t^B are different functions of m
 - interpretation: reserve currency affects costs of country B

Rise of crypto

Suppose crypto becomes more useful starts increasing

 $U = c_{t+1} + \alpha v(m_t^A) + \beta v(m_t^B) + \gamma_t v(m_t^C)$

where $c_{t+1} = \rho_t^A m_t^A + \rho_t^B m_t^B + \rho_t^C m_t^C$

- As household shifts into currency C, m_t^A and m_t^B tend to decrease
 - if ρ_t^i were fixed, m_t^A and m_t^B would decrease in proportion
- Nominal money supplies fixed \rightarrow increases inflation
- Asymmetric effect:
 - higher inflation in currency A can decrease fiscal costs of country B
 - ▶ lower need for inflation tax $\rightarrow \rho_t^B$ can *increase*
- Result: market share of currency B can increase (for a while)

Model sketch 2: CBDC

- Each country can introduce a domestic CBDC
- Choose costly effort level $e \rightarrow$ determines arrival rate of CBDC
- Benefit: increases usefulness of currency $U = c_{t+1} + \alpha v(m_t^A) + \beta v(m_t^B) + \gamma_t v(m_t^C)$ (amount of increase depends on γ_t)
- Objective: maximize discounted sum of $(m_t^i effort^2)$ over time
 - goal of CBDC is to gain (or maintain) market share
 - recall: overall market size is fixed at 1
- Incentive to introduce CBDC depends (roughly) on Δm_t^i
 - small if m_t^i is close to 1 (currency is very dominant)
 - ... or would remain close to 0 (currency is very weak)
 - strongest incentive is for a currency somewhere in between

"pecking order"

Outline

- Sketch the model
 - without CBDC
 - with CBDC
 - aim: understand source of the asymmetries, results
- Comments:
 - 1. CBDC and intermediation
 - 2. synthetic vs. real
 - 3. monetary policy
 - 4. broader competition

1) CBDC and intermediation

• Introducing CBDC in country A makes holding m^A more attractive

$$U = c_{t+1} + \alpha v(m_t^A) + \beta v(m_t^B) + \gamma_t v(m_t^C)$$

increases

- What does m^A represent?
 - physical currency (dollar bills)?
 - > or broader money, including bank deposits, govt. debt, etc.? \Leftarrow
- It is clear why CBDC would make <u>currency</u> more attractive
- Why would it make holding <u>broad money</u> more attractive?
 - USD bank deposits are more useful if I can convert them to a US CBDC for some transactions?

 \Rightarrow I would like to understand the rationale here better

Implication:

- One concern about CBDC: disintermediating banks
 - if funds are shifted out of bank deposits into the CBDC ...
 - … increases bank funding costs, lending rates
 - see Andolfatto; Keister & Sanches; Chiu et al., others
- Here: introducing a U.S. CBDC makes USD deposits more attractive
 - relative to EUR deposits, say
 - could *decrease* U.S. bank funding costs, lending rates
- Interesting counterpoint to the usual concern
 - how strong is each effect? which would dominate?
 - would U.S. banks benefit? or USD deposits overseas?

seems worth thinking about

2) Synthetic vs. real

• A CBDC issued by the Federal Reserve increases α

$$U = c_{t+1} + \alpha v(m_t^A) + \beta v(m_t^B) + \gamma_t v(m_t^C)$$

- A fully-regulated stablecoin backed 100% by T-bills ... increases γ ?
 - this arrangement is sometimes called a "synthetic CBDC"
- Are synthetic and real CBDC equivalent ...
 - in the model?
 - ▶ if m_t^c is backed by m_t^A , does the $\uparrow \gamma$ have the same effect as $\uparrow \alpha$?
 - in reality?
 - 2020 Report from BIS and 7 central banks: "Synthetic CBDC is not CBDC"
 - (I did not understand the logic)

does the model help illuminate this issue?

3) Monetary policy

- The nominal supply of each currency is fixed
- Implication: a decrease in demand for currency A (due to crypto, say)
 - … causes the value of currency A to fall (inflation/devaluation) …
 - ... which makes holding the currency even less attractive
- Active monetary policy would prevent this cycle
 - if central bank targets inflation, for example, ...
 - it will *decrease* the money supply when m_t^A decreases, leaving P^A unchanged
- Model does not allow the central bank to change the money supply
 - a form of fiscal dominance?
- Is this assumption important?
 - what would change if central banks followed a different policy?

vicious cycle

In a similar vein:

- The rise of cryptocurrency makes existing currencies worse
 - because of the inflation effect described above
- Alternative story: competition from crypto could discipline monetary/fiscal authorities
 - suppose country A needs to maintain a particular share m_t^A
 - might have to lower inflation rate in response to competition from crypto
- Focus here is on digital adoption (CBDC), of course, but ...
- Would it be interesting to allow currencies to compete ...
 - ... with crypto and with each other...
- … along other dimensions as well?

- Interesting paper!
- Shows: rich dynamics along the transition to the digital future
- Many issues for further thought