Run Equilibria in the Green-Lin Model of Financial Intermediation

Huberto Ennis
Univ. Carlos III of Madrid
and
FRB of Richmond

Todd Keister
Federal Reserve Bank of New York

October 31, 2008
The Ohio State University
Introduction

• Financial intermediaries are commonly believed to be inherently “fragile”

• Take short-term deposits, make long-term investments

• Result: illiquidity
 • short-term liabilities > short-term assets

• If all investors withdraw funds at once, intermediary will fail
 • if intermediary will fail, investors want to withdraw
 ⇒ hints at possibility of a self-fulfilling bank run

• Classic model: Diamond & Dybvig (1983)
• Maturity transformation/illiquidity is not limited to banks
 • also performed by other financial institutions and in markets

• Examples:
 • Asset-backed commercial paper
 • Money-market/cash management funds
 • Auction-rate securities
 • Investment banks (Bear Stearns, Lehman Bros.)

• Many recent events appear “similar” to a bank run
 • Eichengreen: “What happened to Bear Stearns ... looked a lot like a 19th century run on the bank.”
• Want to be able to evaluate these claims and (importantly) related policy proposals

 • perceived fragility of banks is the justification for (costly) policy interventions

 • recent events are likely to spur new policies/regulations

 • need to understand the potential sources of instability

Q: What features of the environment allow self-fulfilling runs to occur?

 • some partial answers, but much remains unknown

 • we need a reliable “laboratory” to evaluate intuition and policy proposals
Literature following Diamond and Dybvig (1983):

- Jacklin (1987) and Wallace (1988) highlight the important of being explicit about the environment
 - agents are isolated; sequential service constraint

- Green & Lin (2003) study a model with sequential service
 - efficient allocation is uniquely implemented
 - self-fulfilling runs cannot occur under the optimal contract

- Peck and Shell (2003) do get runs in a similar environment

Q: What exactly is needed to generate a run equilibrium in a fully-specified model of financial intermediation?
What We Do

- Study a generalized version of the Green-Lin model
 - allow correlation in agents’ types
- Compute the efficient allocation for any number of agents
- Construct examples of run equilibria (surprising)
 - Green-Lin result is not robust to changes in distribution of types
- Clarify nature of the differences between results in Green-Lin and Peck-Shell
Environment

Green-Lin version of the Diamond-Dybvig model:

- 2 time periods, $t = 0, 1$
- Finite number I of traders
- Traders are isolated from each other; markets cannot meet
 - can contact an intermediary in each period
- Intermediary has I units of good in period 0
 - return on investment is $R > 1$ in period 1
Preferences

- Utility:
 \[
 v(a_i^0, a_i^1; \omega_i) = \frac{(a_i^0 + \omega_i a_i^1)^{1-\gamma}}{1 - \gamma} \quad \gamma > 1
 \]

 where \(\omega_i = \begin{cases} 0 \\ 1 \end{cases} \) if trader \(i \) is \{ impatient, patient \}

- Type \(\omega_i \) is private information

- \(\pi = \) probability of \((\omega_i = 0) \)

 - types may be independent (Green & Lin) or correlated

- \(\omega = (\omega_1, \omega_2, \ldots, \omega_I) \) denotes the aggregate state of nature
Sequential Service

- At $t = 0$, traders contact the intermediary sequentially
 - idea used in Diamond-Dybvig, formalized by Wallace (1988)
 - order given by index i (hence, known by traders)
- Traders must be paid as they arrive (an “urgent” need to consume)
- Sequential service constraint:
 \[
 a_i^0(\omega) = a_i^0(\hat{\omega}) \quad \text{for all } \omega, \hat{\omega} \text{ with } \omega^i = \hat{\omega}^i
 \]
 - a_i^0 can only depend on the information received by the intermediary prior to i
Allocations

- Set of feasible (ex post) allocations:
 \[\mathcal{A} = \left\{ a : \mathbb{I} \rightarrow \mathbb{R}^2_+ \times \{0, 1\}^2 : \sum_{i \in \mathbb{I}} \left(a_i^0 + \frac{a_i^1}{R} \right) \leq I \right\} \]

- Set of feasible state-contingent allocations:
 \[\mathcal{F} = \left\{ a : \{0, 1\}^I \rightarrow \mathcal{A} \right\} \]

- Efficient allocation \(a^* \) maximizes sum of expected utilities
 - subject to feasibility, sequential service

- Solving for the efficient allocation is a finite dynamic-programming problem
Efficient allocation

First: some obvious properties of the efficient allocation

(i) Impatient traders consume only at \(t = 0 \); patient traders only at \(t = 1 \)

\[
a_i^0 (\omega) = 0 \quad \text{if} \quad \omega_i = 1 \quad \text{and} \quad a_i^1 (\omega) = 0 \quad \text{if} \quad \omega_i = 0.
\]

(ii) Resources remaining at \(t = 1 \) are divided evenly among patient traders

\[
a_i^1 (\omega) = \frac{R \left(I - \sum_{i=1}^{I} c_i^0 (\omega) \right)}{\theta (\omega)}
\]

where

\[
\theta (\omega) = \sum_{i=1}^{I} \omega_i
\]
• All that remains is to determine $a_i^0(\omega)$ when $\omega_i = 0$
 • If trader i is impatient, how much should she consume?

• Suppose intermediary has:
 • y units of good left
 • encountered θ patient traders so far

• Let $V_i^\omega(y, \theta) =$ expected utility of traders i, \ldots, I
 • conditional on trader i being type ω

• These value functions must satisfy:
\[
V_i^0 (y_{i-1}, \theta_{i-1}) = \max \left\{ c_i^0 \right\} \begin{cases}
\frac{(a_i^0)^{1-\gamma}}{1-\gamma} + p_{i+1} (\theta_{i-1}) V_{i+1}^0 (y_{i-1} - a_i^0, \theta_{i-1}) \\
+ (1 - p_{i+1} (\theta_{i-1})) V_{i+1}^1 (y_{i-1} - a_i^0, \theta_{i-1})
\end{cases}
\]

\[
V_i^1 (y_{i-1}, \theta_{i-1}) = \begin{cases}
p_{i+1} (\theta_{i-1} + 1) V_{i+1}^0 (y_{i-1}, \theta_{i-1} + 1) + \\
(1 - p_{i+1} (\theta_{i-1} + 1)) V_{i+1}^1 (y_{i-1}, \theta_{i-1} + 1)
\end{cases}
\]

- **Solution:**

\[
a_i^0 = \frac{y_{i-1}}{\psi_i (\theta_{i-1})^{1/\gamma} + 1}
\]

\[
\psi_i (x) = p_{i+1} (x) (\psi_{i+1} (x)^{1/\gamma} + 1)^\gamma + (1 - p_{i+1} (x)) \psi_{i+1} (x + 1)
\]

\[
\psi_i (x) = (x R^{1/\gamma})^\gamma
\]
• Example: $I = 4$, $R = 2$, $\gamma = 6$, $\pi = 0.5$ (independent)
Implementation

• Intermediary wants to implement the efficient allocation \(a^*\)
• Traders play a direct revelation game
 • contact intermediary sequentially and report type
 • receive payments according to efficient allocation
 • do not observe each others’ actions (isolation)
• Order in which traders contact intermediary is given by \(i\)
 • this order is known to traders (as in Green & Lin)
• Direct revelation game with strategies:

\[\mu_i : \omega_i \mapsto \{0, 1\} \]

and payoffs:

\[U_i (a^* \circ (\mu_{-i}, \mu_i)) \]

• Equilibrium: a profile \(\mu^* \) such that

\[U_i (a^* \circ (\mu_{-i}^*, \mu_i^*)) \geq U_i (a^* \circ (\mu_{-i}^*, \mu_i)) \quad \forall \mu_i \forall i \]

• If \(a^* \) is incentive compatible, \(\mu^* = \omega \) is an equilibrium

 • Green & Lin show this always holds with independent types
The Question

Q: Does game have an equilibrium where $\mu_i^* \neq \omega_i$ for some i?

- any false reports must come from patient traders (i.e., a run)
- if so, a run can occur with positive probability in the “overall” game where intermediary chooses contract

Green & Lin’s result:

- When types are independent, answer is ‘no’
 - surprising; information frictions not “strong enough”
Intuition for Green-Lin Result

- Backward induction argument; start with trader I
 - regardless of reports of previous traders, she receives more consumption if she reports ‘patient’
 - reporting truthfully is a dominant strategy
- For any trader i: suppose everyone after her in line will report truthfully
 - G&L show she strictly prefers to report truthfully, regardless of reports before her (Lemma 5)
 - nontrivial property of the efficient allocation; “continuation IC”
- Iterated deletion of strictly dominated strategies leaves only truthful reporting for all i
Andolfatto, Nosal, & Wallace (2007)

- Suppose traders can observe earlier actions before reporting
 - change in environment; dynamic game
- Incentive compatibility in this environment is equivalent to “continuation IC” in Green-Lin
 - IC: trader i is willing to report truthfully if all others do so, for any profile of ω^{i-1}
 - any partial history of reports μ^{i-1} could have been truthful
 - trader i is willing to report truthfully if everyone after him will do so, regardless of the actions of those before him (＝ continuation IC in Green-Lin)
- ANW’s main result: In this modified environment, any IC allocation can be uniquely implemented
 - same backward induction argument as before
 - also allow for more general preferences
- Like Green & Lin, this result relies on:
 - independent types (in fact, ANW highlight the importance of this assumption)
 - all traders report in period 0
- We work with the Green-Lin environment
Q: How important is backward induction to the G&L result?

- answer is not obvious

- Diamond-Dybvig and others generate runs using a **simple** contract
 - all early withdrawers receive same amount

- Is adding flexibility in the contract (as in G&L) enough to prevent runs?
 - or is the information depositors have about the order of withdrawals important?
• Peck & Shell (2003) address this issue

 • study a model with no restrictions on contracts other than sequential service

• Model differs from Green-Lin in two respects

 (i) agents must act before knowing position in order (an additional friction)

 (ii) preferences are different (marginal utility is type dependent)

• Construct examples of run equilibria

 • first examples in literature without ad hoc restrictions on contracts
Q: Is the difference in results due to

- the difference in information (backward induction)?
- the difference in preferences?

- We are able to answer this question
- Take the Green-Lin model with independent types
- Suppose traders must act before knowing \(i \)
 - expected utility

\[
\frac{1}{I} \sum_{i \in I} E[U_i(a, \omega)]
\]
• Model is exactly Green-Lin, but with Peck-Shell information structure

• Efficient allocation is unchanged
 • this is key: we can use our solution above

• We construct examples of run equilibria
 • easy when I is large

⇒ Peck-Shell results do not depend on their particular assumptions about preferences
One example: \(I = 15, \ R = 1.1, \ \gamma = 6, \ \pi = 0.1 \)

Figure: Expected utility if all other traders run
Correlated Types

- Return to Green-Lin model (traders know the order)

- Suppose ω_i are not i.i.d.
 - traders have private info about others’ types

- Example: $I = 4$, $R = 2$, $\gamma = 6$

 number of impatient traders

<table>
<thead>
<tr>
<th>number</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>probability</td>
<td>0.01</td>
<td>0.01</td>
<td>0.96</td>
<td>0.01</td>
<td>0.01</td>
</tr>
</tbody>
</table>

- Example is “close” to a model with no aggregate uncertainty
 - useful for gaining intuition; not important in general
• Efficient allocation:

• large payments for first two early withdrawals \(\sim c_E^* \)

• much lower payments if \(> 2 \) early withdrawals
A Run Equilibrium?

- Trader I will always report truthfully (as in Green & Lin)
 - any run equilibrium must be *partial*

- Result: the following strategies are an equilibrium:

\[\mu_i^* = \begin{cases} 0 & \text{for } i = \{1 \text{ and } 2\} \\ \omega_i & \text{for } i = \{3 \text{ and } 4\} \end{cases} \]

- first two traders in the order run
- last two traders report truthfully

- Critical question: Why does trader 2 run?
 - why does the backward induction argument break down?
• Trader 2 knows trader 1 has withdrawn
 • will be 2nd withdrawal if she runs \(\sim c^*_E \)
 • if she waits, consumption depends on \(\omega_3 \) and \(\omega_4 \)
 • if \(\omega_3 = \omega_4 = 0 \), her consumption will be low \(\left(< c^*_E \right) \)

• Planner treats trader 1’s report as truthful
 • very unlikely that both 3 & 4 are impatient

• Trader 2 knows trader 1’s report was uninformative
 • very possible that both 3 & 4 are impatient
Given trader 2’s beliefs, the early payment \((\sim c_E^*) \) is attractive

- the “continuation IC” property fails here

Reason: traders have better information about the types of the remaining agents

- and, thus, about additional early withdrawals

Information frictions keep this info from the intermediary

- result: intermediary is too optimistic, sets \(c_i^0 \) too high

Note: this cannot happen when types are independent

Easy to construct examples with more traders, etc.
Another example

- Suppose:

- significant aggregate uncertainty (but extreme values are unlikely)
The following strategies are an equilibrium

\[\mu_i^* = \begin{cases} 0 & \text{for } i = \{1, \ldots, 7\} \\ \omega_i & \text{for } i = \{8, 9, 10\} \end{cases} \]

- first seven traders in the order run
- last three traders report truthfully

Trader 7 is the “critical” trader:
- in equilibrium, she thinks intermediary is overly-optimistic about likelihood withdrawals after her (same logic as before)
Summary

- In general, traders only run if they expect more early withdrawals than intermediary had planned for.

- Green & Lin: traders know positions in the order
 - all that matters is number of *additional* early withdrawals
 - the last trader will always report truthfully

- A run equilibrium requires a “critical” trader (last to run)
 - will run if she is more pessimistic than the intermediary about additional early withdrawals

- How can this arise in equilibrium?
• Number of additional early withdrawals depends on:
 • number of traders remaining in the order
 • probability distribution over their types

• A run requires that – in equilibrium – the critical trader is more pessimistic than the intermediary

• With independent types, this cannot occur
 • types of remaining agents are unrelated to those who have withdrawn

• We show that when types are correlated, it can occur
Extensions

- Suppose intermediary only observes *withdrawal requests*
 - traders who are not withdrawing stay at home

- Changes the efficient allocation
 - intermediary has less information to condition payments on
 - we compute using a similar dynamic programming problem

- We show: run equilibria exist even with independent types
 - again, critical trader is pessimistic about the number of additional early withdrawals
 - another dimension in which unique-implementation result is not robust
Concluding Remarks

- Green & Lin derived a remarkable result:
 - in a Diamond-Dybvig-style model, the efficient allocation is uniquely implementable
 - self-fulfilling runs are not possible

- The backward-induction logic seemed very general
 - tempting to draw the conclusion that self-fulfilling runs cannot occur if contract is designed optimally

- We show that introducing correlation in types overturns the unique-implementation result
 - the possibility of self-fulfilling runs cannot be ruled out on theoretical grounds
Extra Stuff
Commitment

- Consider the overall game, including the choice of contract
 - intermediary moves first, then traders play withdrawal game

- A run cannot occur with certainty in this game
 - if intermediary knows traders will run, would choose a “run proof” payment schedule
 - one possibility: $x_n = 1$ for all n

- However, a run could occur with some probability
 - traders coordinate on a “sunspot” variable; correlated eqm

- What is the maximum probability of a run consistent with equilibrium?
 - straightforward to show > 0; continuity argument
• Maximum probability of a run depends on the welfare difference between x^* and the best “run proof” contract

• One possibility: “suspension of convertibility”

\[x_n = \begin{cases}
 x_n^* \\
 0
\end{cases} \quad \text{for} \quad n \begin{cases}
 \leq \\
 \geq
\end{cases} (\pi + \epsilon) I \]

• Clearly generates lower welfare than x^*, but ...
 • welfare converges to that under x^* as $I \to \infty$

• Conjecture: With $\delta_2 \gg 0$ and independent types, the maximum probability of a run $\to 0$ as $I \to \infty$
 • bank runs should not be a significant concern when I is large
• However, this assumes the intermediary can commit to the payment schedule

• Ennis and Keister (2007): In an environment without commitment, runs can occur even when I is very large
 - suspending payments is *ex post* inefficient
 - lack of commitment leads intermediary to respond to a run with a partial suspension
 - broadly similar to the efficient payment schedule studied here

• Result relies on the costly communication friction
 - delays flow of information to the intermediary
 - intermediary is slow to recognize that a run is underway