Optimal Banking Contracts and Financial Fragility

Huberto M. Ennis Federal Reserve Bank of Richmond Todd Keister Rutgers University

2015 SAET Conference

Cambridge, England

Financial fragility

- Banks and other financial intermediaries appear to be *fragile*
 - that is, susceptible to events in which depositors/creditors suddenly withdraw funding (a *bank run*)
- General question: Why does this happen?
 - *i.e.*, what are the fundamental cause(s) of financial fragility?
 - critical for understanding what can/should be done about it
- Many possible answers:
 - poor/distorted incentives due to limited liability or anticipated government support (bailouts), externalities (fire sales), or bounded rationality in contracts or in forecasts
- Each of these problems might be addressed through regulation

Diamond & Dybvig (JPE, 1983)

- However: the classic paper of Diamond and Dybvig suggests banking is *inherently fragile*
- They study a model with rational agents and no incentive distortions
 - banking contract is chosen to maximize welfare
 - no role for regulation/macroprudential policy
- Efficient arrangement involves maturity transformation
 - value of bank's short-term liabilities > short-run value of assets
- This arrangement leaves the bank susceptible to a self-fulfilling run
 if other depositors rush to withdraw ...
- \Rightarrow Even with no distortions or other "problems", banking is fragile

- Diamond-Dybvig analysis suggests a stark policy choice:
 - financial stability requires either broad government guarantees (deposit insurance),
 - a "narrow" banking system with no maturity transformation (but this is costly; Wallace, 1996),
 - or living with recurrent crises
- But ... the banking arrangement studied by Diamond & Dybvig was not optimal within their model
 - with no aggregate uncertainty: easy to prevent runs (using suspension of convertibility)
 - with aggregate uncertainty: did not solve for the efficient allocation or banking contract
- Q: Does fragility arise under **optimal** banking contracts?

Outline

- Set up a basic environment
- Discuss the existing literature
 - focus on Green and Lin (2003); Peck and Shell (2003)
- Describe what we do
 - a new specification of the environment
- Results:
 - optimal banking contract has some nice features
 - optimal arrangements are sometimes fragile
- Conclude

A basic environment

- Two periods (t = 0, 1) and a finite number I of depositors
- Bank has I units of good at t = 0
- Return on investment is R > 1 at t = 1
- Preferences:

$$\begin{split} u\left(c_{i}^{0}+\omega_{i}c_{i}^{1}\right) &= \frac{1}{1-\gamma}\left(c_{i}^{0}+\omega_{i}c_{i}^{1}\right)^{1-\gamma} \qquad \gamma > 1\\ \end{split}$$
 where $\omega_{i} &= \left\{ \begin{array}{c} 0\\ 1 \end{array} \right\}$ if depositor is $\left\{ \begin{array}{c} \text{impatient}\\ \text{patient} \end{array} \right\}$

- A depositor's type is private information
 - prob($\omega_i = 0$) = π ; independent across depositors

- Depositors can visit bank at t = 0 or t = 1, receive goods (withdraw)
 - arrive one at a time at t = 0, in randomly-determined order
 - must consume immediately (Wallace, 1988)
- Sequential service constraint:
 - each payment can depend only on information available to the bank when it is made
 - \Rightarrow set of feasible allocations depends on what bank observes
- Features that vary across papers:
 - what does the bank observe about depositor decisions?
 - what do depositors know about position in the withdrawal order?

Methodology

- Find the efficient allocation of resources (subject to sequential service)
 - impatient depositors all consume at t = 0(and patient depositors at t = 1)
 - but they may consume different amounts depending on what the bank knows when they withdraw
- Try to implement this allocation using a direct mechanism
 - "banking contract" allows depositors to choose when to withdraw
 - resembles the demand-deposit arrangements observed in practice
- Question: does this mechanism admit a non-truthtelling equilibrium in which patient depositors withdraw early?
 - if so, we say that banking is *fragile* in that environment

Peck & Shell (JPE, 2003)

- Depositors report to the bank only when they withdraw
 - bank does not observe decisions of depositors who choose to wait

 \Rightarrow bank chooses a sequence of payments at $t = 0 : \left\{x_j\right\}_{j=1}^{I}$

- Depositors have no information about their position in the withdrawal order before deciding
 - all depositors face the same decision problem
 - after decisions are made, places in order assigned at random
- Result: For some parameter values, a bank run equilibrium exists
 - extends Diamond-Dybvig fragility result to an environment where the banking contract is fully optimal

Green & Lin (JET, 2003)

- All depositors report to the bank at t = 0
 - even just to say "I prefer to wait until t = 1"
 - \Rightarrow bank learns about withdrawal demand relatively quickly
 - efficient allocation is more state-contingent than in Peck-Shell
- Depositors observe their position in the order before deciding (or a signal correlated with their position)
- Result: direct mechanism *uniquely* implements the efficient allocation
 - bank run equilibrium never exists
- Suggests proper contracting/regulation can solve the fragility problem
 - no need for government guarantees

Other contributions

- Early on:
 - Jacklin (1987), Wallace (1988, 1990)
- More recent:
 - Andolfatto, Nosal and Wallace (2007), Ennis and Keister (2009),
 Azrieli and Peck (2012), Bertolai, Cavalcanti and Monteiro (2014),
 Sultanum (2014), Andolfatto, Nosal and Sultanum (2014)
 - among others

Summary so far

- Are optimal banking arrangements fragile?
 - answer depends critically on the details of the environment
 - \Rightarrow important to get these details right
- Banking contracts in Green & Lin are very complex
 - do not resemble standard deposits (no "face value")
- Depositors in Peck & Shell are (very) in the dark
 - in equilibrium, some regret their decision when paid by bank

What we do

- Propose an alternative environment where
 - only depositors who withdraw report to the bank (as in Peck-Shell)
 - depositors observe previous withdrawals (same as bank; new)
- We show that under this specification:
 - (i) optimal arrangement looks more like a standard banking contract (exhibits a "face value" property in normal times)
 - (*ii*) deposits are subject to discounts when withdrawals are high (partial suspension, as in Wallace, 1990)
- (iii) banking system can be fragile

Efficient allocation

- Summarized by a payment schedule $\left\{x_j\right\}_{j=1}^{I}$ (as in Peck-Shell)
- Let θ = number of patient depositors (random)
- Efficient allocation solves:

$$\sum_{\theta=1}^{I} p(\theta) \left(\sum_{n=1}^{I-\theta} u(x_n) + \theta u\left(\frac{Rz_{I-\theta}}{\theta}\right) \right) + p(0) \left(\sum_{n=1}^{I-1} u(x_n) + u(z_{I-1}) \right)$$

where

$$z_m = I - \sum_{n=1}^m x_n$$
 for $m = 1, \dots I - 1$

• Or, recursively:

$$V_{n}(z_{n-1}) = \max_{\{x_{n}\}} \left\{ \begin{array}{c} \frac{(x_{n})^{1-\gamma}}{1-\gamma} + q_{n+1}V_{n+1}(z_{n-1}-x_{n}) + \\ \\ (1-q_{n+1})(I-n)\frac{1}{1-\gamma}\left(\frac{R(z_{n-1}-x_{n})}{I-n}\right)^{1-\gamma} \end{array} \right\}$$

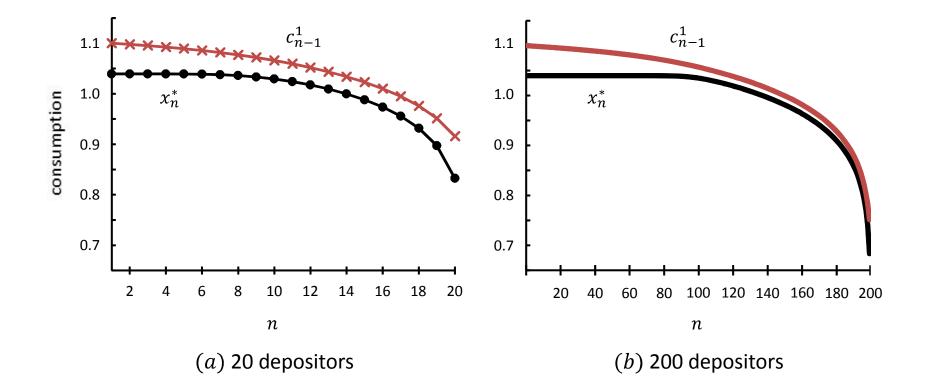
• Solution:

$$x_n^* = rac{z_{n-1}^*}{(\phi_n)^{rac{1}{\gamma}} + 1}$$
 for $n = 1, \dots, I$,

where

$$\phi_n = q_{n+1} \left(\phi_{n+1}^{\frac{1}{\gamma}} + 1 \right)^{\gamma} + (1 - q_{n+1}) \left(I - n \right)^{\gamma} R^{1 - \gamma}$$

• Graphically:



- Properties:
 - strictly decreasing, but depositors receive "face value" for many n
 - liquidity insurance: $x_n > 1$ for many n

Banking: A withdrawal game

- $\bullet\,$ Study the direct mechanism based on x^*
- Each depositor observes own type, number of previous withdrawals, then decides when to withdraw

– a strategy is:

$$y_i: \Omega \times \{1, ..., I\} \rightarrow \{0, 1\}$$

- Payoffs in the game are determined as the bank follows x^*
- A Bayesian Nash Equilibrium is a profile of strategies such that y_i is optimal for all i, taking y_{-i} as given

Incentive compatibility

• Is there a truthtelling (no run) equilibrium with

$$y_i(\omega_i, n) = \omega_i$$
 for all n ?

- Define $p_n(\theta; y) = posterior probability of <math>\theta$ for a patient depositor who has the opportunity to make the n^{th} withdrawal
 - complex object: depositor updates about his potential position in the order and the types of other agents
- Patient depositors are willing to always wait if:

$$u(x_n^*) \leq \sum_{\widehat{\theta}=1}^{I} p_n\left(\widehat{\theta}; y_{-i}\right) u\left(R\frac{z_{I-\widehat{\theta}}}{\widehat{\theta}}\right) \quad \text{for } n = 1, \dots, I.$$

where

$$z_m = I - \sum_{n=1}^m x_n.$$

Financial fragility

- Focus on situations where the efficient allocation is IC
- Ask: Does this game also have a run equilibrium?
- First result: There is no *full run* equilibrium with

 $y_i(\omega_i, n) = 0$ for all (ω_i, n) and all i

- observing n = I tells the depositor she is last in the order
- \Rightarrow can have z today or Rz tomorrow (with R > 1)
- \Rightarrow last depositor will never want to run (as in Green & Lin)
- A run equilibrium, if it exists, is necessarily partial

A partial run

• One candidate profile of strategies

$$y_i^{\bar{n}}(\omega_i, n) = \begin{cases} 0 & \text{for } n \leq \bar{n} \\ \omega_i & n > \bar{n} \end{cases} \text{ for some } 1 \leq \bar{n} \leq I - 1 \qquad (1)$$

– run lasts for \bar{n} withdrawals, then stops

• Define:
$$\mu\left(n;y_{-i}^{\overline{n}}\right) = \sum_{\widehat{\theta}=1}^{I} p_n\left(\widehat{\theta};y_{-i}^{\overline{n}}\right) u\left(R\frac{z_{I-\widehat{\theta}}}{\widehat{\theta}}\right)$$

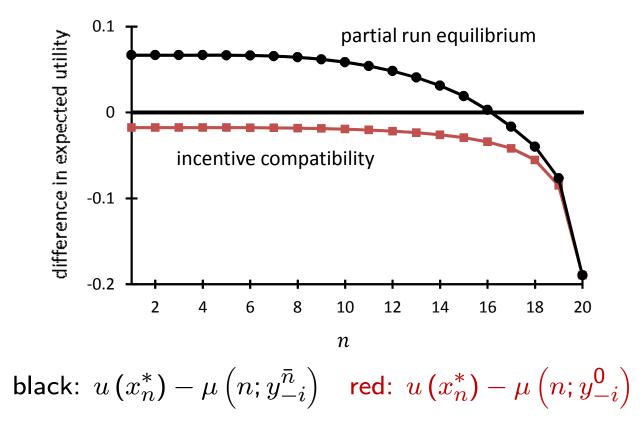
• Need to find \bar{n} such that:

$$\begin{array}{lll} u\left(x_{n}^{*}\right) & \geq & \mu\left(n;y_{-i}^{\bar{n}}\right) & \text{for } n=1,\ldots,\bar{n} \\ u\left(x_{n}^{*}\right) & \leq & \mu\left(n;y_{-i}^{\bar{n}}\right) & \text{for } n=\bar{n}+1,\ldots,I \end{array}$$

• Many examples can be constructed

One example

$$I=20,\ R=1.1,\ \gamma=6,\ \pi=rac{1}{2}$$
 with $ar{n}=16$



 \Rightarrow Financial fragility can arise under the optimal banking contract here

Discussion

- If bank expects depositors to run, it should change $\{x_n\}$
 - be more conservative; lower x_1 , etc.
- But suppose a run is random (determined by "sunspots")
 - if prob(run) is small, bank will set $\{x_n\}$ close to $\{x_n^*\}$
 - \Rightarrow a run can occur in some states (Cooper and Ross, 1998)
- Can calculate the maximum probability of a run consistent with equilibrium
 - one way of measuring financial fragility

Implications

- We are back to the stark policy choice of Diamond & Dybvig
- In a world with incentive distortions...
 - regulation may be desirable to correct distortions
 - but *optimal* regulation (and optimal contracting) may not eliminate bank runs
- What should a policy maker do?
 - need to think about providing government guarantees
 - or living with recurrent (hopefully rare) crises

Conclusion

- We address the question of whether banking is *inherently* fragile
 - answer is known to depend on the details of the environment
- We propose an environment that generates some nice features
 - banking contract resembles *simple* demand deposits
 - depositors choose between a certain payment today and the risk of waiting
- We show that fragility can arise in this environment
- We believe this approach will be useful in other research
 - in fact, it underpins the limited commitment approach in Ennis & Keister (2010)