Floor Systems and the Friedman Rule: The Fiscal Arithmetic of Open Market Operations

The views expressed herein are those of the authors and do not reflect the views of the Federal Reserve Bank of New York.

A general question

- Prior to the financial crisis, many central banks implemented monetary policy using a *corridor system* (or *channel system*)
 - CB lends to banks at an interest rate above its target
 - and pays a rate below its target on deposits (excess reserves)
 - use open market operations to steer market rate to target
- Unconventional policies have created large excess reserves
 - moves a central bank into a *floor system*
 - market rates determined largely be CB deposit facility (IOER)
- Q: How should CBs operate when "normal times" return?

- A floor system has some clear advantages
 - removes banks' opportunity cost of holding reserves
 - banks hold more of this safe, perfectly liquid asset
 - and spend fewer resources trying to economize on reserves
 - a partial implementation of the well-known Friedman rule (see: A Program for Monetary Stability, 1959)
- But few CBs operated a floor system prior to the crisis
 - exception: RBNZ adopted a floor system in 2006
- Why?
 - are there good reasons to prefer a corridor system?
 - or is the floor system an idea whose time has come?

One issue: Possible fiscal consequences

- In a floor system, the central bank:
 - has a larger balance sheet, and
 - > pays interest on its liabilities at (or near) the market rate
- What are the fiscal implications of operating this way?
 - e.g., how are these interest payments financed?
- Some recent work focuses on the Fed's future path
 - will use a floor system as balance sheet gradually shrinks
 - rising interest rates \Rightarrow capital losses + higher interest expenses
 - could make equity, net revenue negative in some periods
 - see Carpenter et al. (2015), Christensen et al. (2015), Greenlaw et al. (2013), plus del Negro and Sims (2015), Hall and Reis (2015)

- Separately, Berentsen et al. (2014; BMW) raise concerns about the steady-state fiscal implications of a floor system
- Study a GE model in the tradition of Lagos and Wright (2005)
 - imperfect interbank market and role for CB facilities
 - builds on Berentsen and Monnet (2008)
- Give conditions under which the optimal floor system requires the government to subsidize the central bank
 - due to large interest cost (not capital losses)
 - raises political concerns about CB independence
 - the "unpleasant fiscal arithmetic" of a floor system

- We revisit this general issue, aiming to better understand:
 - conditions under which the CB requires a subsidy to operate
 - > and when using a floor system generates higher welfare
- We use the BMW model with a couple of modifications
 - assume the CB operates through open market operations
 - ... using short-term government bonds (Assumption 1)
- Idea is to focus purely on implementing monetary policy
 - conceptually distinct from unconventional policies related to CB's choice of assets
 - importantly: using a realistic accounting system

- Under our accounting, the CB never requires subsidies
 - in any monetary equilibrium, CB's net revenue is non-negative
 - no unpleasant arithmetic in this sense
- Optimal policy is a floor system
- Under the optimal policy, CB net revenue is zero in all periods
 - not surprising; seigniorage revenue = 0 under the Friedman rule
- If the CB must raise positive revenue, optimal policy may still be a floor system if the CB has other policy tools available
 - example: reserve requirements
- Conclusion: Floor system still seems an attractive option

- Discrete time: t = 0,1,2, ...
- Agents are infinitely lived
 - two types of private agents, *buyers* and *sellers*
 - a government that conducts fiscal policy (taxes, transfers, debt)
 - a central bank that can creates money (reserves) through OMOs
- In each period:

Initial period:

- govt issues bonds to buy ψ units of settlement good
 - consumes these goods (or transfers to households)
 - no taxes in this period
- All other periods:
 - govt collects lump sum taxes and receives net revenue of CB
 - no further consumption/transfers after initial period
 - budget constraint:

$$\rho_t B_{t+1} + T_t + S_t = B_t$$

- Stock of nominal bonds grows at fixed rate $1 + \eta$
 - same for nominal money supply; η = net inflation rate

In period *t*:

Assets		Liabilities		
Bonds	$ ho_t B_{t+1}^{CB}$	Money	$\frac{M_t + L_t - D_t}{D_t}$	(settlement market)
Loans	L_t	Deposits		(standing facilities)

• When t + 1 begins:

Assets		Liabilities	
Bonds	B_{t+1}^{CB}	Money	$M_t + L_t - D_t$
Loans	$(1+i_\ell)L_t$	Deposits	$(1+i_d)D_t$
		Surplus	S_{t+1}

$$S_{t+1} = B_{t+1}^{CB} + (1 - i_{\ell})L_t - (M_t + L_t + D_t) - (1 + i_d)D_t$$

or:
$$S_{t+1} = i_t M_t + i_\ell L_t - i_d D_t$$

Definition:

- unpleasant fiscal arithmetic occurs if $S_t < 0$ for some t
 - note: differs from definition in BMW because of different accounting
- Proposition: In any monetary equilibrium,

 $i_{m,t} \in [i_d, i_\ell]$ and $i_t \in [i_d, i_\ell]$ for all t

market interest rates all lie within the CB's corridor

Definition:

- The CB operates a *corridor system* in period t if $i_d < i_{m,t} < i_{-l}$
- It operates a *floor system* in period t if $i_d = i_{m,t} < i_\ell$
 - note: these definitions refer to a property of equilibrium

Proposition: $S_{t+1} \ge 0$ holds for all t in any monetary equilibrium.

Proof:

$$S_{t+1} = i_t M_t + i_\ell L_t - i_d D_t$$
$$\geq i_d (M_t + L_t - D_t)$$
$$\geq 0$$

- Under Assumption 1, unpleasant fiscal arithmetic never arises
 - note: does not require equilibrium to be stationary
 - also does not depend on detailed features of the model
- Key point: central bank's assets \geq liabilities
 - > and assets earn the market rate of return

- Assume $\psi \ge 1$
 - initial government debt is sufficiently large

Proposition: The optimal policy sets $1 + i_d = \frac{\eta}{\beta}$.

- corresponds to a floor system (with $i_t = i_{m,1} = i_d$)
- implements the first-best allocation as a stationary equilibrium

Proposition: Under the optimal policy, $S_{t+1} = 0$ for all $t \ge 0$

- that is, seignorage revenue = 0 under the Friedman rule
- Bottom line: A floor system looks like an attractive option

- Suppose we require $S_t \ge \overline{S}_t$ for all t
 - assume requirement is uniformly bounded over time
 - and ψ is large enough
- Give CB one more policy tool: reserve requirement
 - requires bank *i* to hold at least C_{t}^{i} ,
 - pay interest on required reserves at rate i_c

Proposition: The optimal policy is a floor system with $i_c < i_d$

- Intuition: required reserves act as a lump-sum tax here
 - better than the distortions associated with a corridor system
 - but recall the Friedman rule is optimal in many environments with distortionary taxes (Chari et al. 1996)

Central bank surplus in practice

- In practice central banks issue (a lot of) currency, which does not pay interest
 - > 2006: 93% of Fed's liabilities were Federal Reserve Notes
- Central bank revenue associated with currency is large
 - 2006: Fed earned roughly \$35 billion on portfolio financed by currency
 - compared with \$12 *million* from lending to depository institutions
- Demand for currency creates a large buffer for CBs
 - helps keep net income positive even after expenses, etc.

- Do fiscal considerations argue against using a floor system?
 - or, might a floor system be costly for the central bank?
- If CB follows Assumption 1: No
 - intuition: Assumption $1 \Rightarrow$ no interest rate or credit risk
 - > as long as CB earns the market rate on its assets ...
 - ... it can afford to pay the market rate on (all of) its liabilities
 - Fed's possible losses come from choice of assets, not floor system
- Possible caveats:
 - result may change if government bonds are in short supply
 - or if there is credit risk in (some) government bonds
 - how should unpleasant arithmetic be defined in this case?

Back to the general question:

How should CBs implement monetary policy going forward?

- or, What are the arguments against a floor system?
- May be reasons outside this model to prefer a corridor system
 - under the optimal policy here, interbank market trading vanishes
 - is that a problem?
 - commitment and political economy considerations
- Interesting issues for research