Discussion of:

The Effects of Monetary Policy and Other Announcements

by C. Gu, H. Han, and R. Wright

Todd Keister Rutgers University

ITAM-PIER Conference on Macroeconomics August 24, 2017

Outline

- Review the basic mechanism
 - aim to understand general features of results
- Discuss interpretations/conclusions in the simplest model
 - b do early announcements really increase volatility?
 - if so, what force(s) drive this result?
- Raise 3 questions

A (very) basic model

• Define:

• M_t = nominal money supply

• $p_t = \text{ price level} \Rightarrow \frac{p_{t+1}}{p_t} = \text{inflation}$

• $z_t = \frac{M_t}{p_t}$ real money balances

Accounting:

$$\frac{M_{t+1}}{M_t} = \frac{p_{t+1}}{p_t} \frac{z_{t+1}}{z_t}$$

- Assume: $z_t^d = g\left(\frac{p_t}{p_{t+1}}\right)$
- Equilibrium:

$$z_t = g\left(\frac{M_t}{M_{t+1}}\frac{z_{t+1}}{z_t}\right)$$
$$z_{t+1} = \frac{M_{t+1}}{M_t}g^{-1}(z_t)z_t$$

or

Dynamics of z_t

• (Obvious) point: must start at z^* for money to retain value

• Suppose
$$M_t = M$$
 for $t < T$,
 $M' > M$ for $t \ge T$

What is the path of z_t , p_t ?

Result 1: The price level must fully adjust by period T

- might have thought: some adjustment before T and some after
- but that cannot happen here if money is to retain value

The day before

• What happens at period T - 1?

Result 2: z_{T-1} is independent of what happened before

might have thought: a long lead time implies less adjustment is needed in the last period

Impact of news

- What happens at the time of the announcement?
- Must start on the (unique) path that hits z_{T-1} in T-1 steps
 - more steps \Rightarrow start closer to the (original) steady state

Result 3: The change in z on announcement is <u>decreasing</u> in T.

Another view

• Looking at the behavior of p_t :

- > Price level jumps from p_0 to this path on announcement
 - earlier announcement \Rightarrow smaller initial jump

Early announcements and volatility

- Does an earlier announcement ↑ or ↓ volatility?
 - answer depends on the *comparison* you make
- Paper: benchmark is a complete surprise at T
 - no change in $z_t \rightarrow$ any early announcement increases volatility
 - but ... this case seems very special
- Suppose agents will find out at least one period in advance
 - no complete surprises; plans "leak" out one period in advance
 - or can choose to announce plans earlier
- ⇒ Clear sense in which earlier announcement lowers volatility
 - intuition: total change in p_t is fixed
 - early announcement \Rightarrow this change is spread over more periods

- Suppose the event is instead a change in money demand
 - in period T 1, agents have a lower need for real balances

again, the law of motion is different for one period

qualitatively the same!

- Results are (essentially) the same:
 - change between T 1 and T is independent of the lead time
 - earlier news leads to a smaller jump on announcement

Summary

- My (very) simple model: earlier news \Rightarrow less volatility
 - opposite to the message of the paper
 - so ... what is my model missing?
- 1. I have ruled out complete policy surprises
 - but ... is that what the paper is really about?
- 2. I have assumed g is nicely behaved ²
 - with strong income effects, etc ...
- 3. My model is very simple
 - \blacktriangleright no other asset returns appear in g
 - no other variables to be volatile

How important is each of these?

Three questions

1) What is the relevant benchmark?

- The case where ΔM is a complete surprise does not seem to be a great benchmark (to me)
 - policy is neutral, so ... why is it being done?
 - has no counterpart for the case of a real news shock
- Better benchmark: agents learn the shock at T 1...
 - either a policy announcement or a real news shock
- Question: what happens when they learn it earlier?
 - simple model: early news reduces volatility, as expected
 - focus: what force(s) can overturn this result?

2) What force(s) overturn the basic result?

- How important are complex dynamics associated with nonmonotonicity of g?
 - some conjectures for "small" news:

stability of steady state	dynamics	effect on volatility
unstable	monotone	\downarrow
unstable	oscillating	↓?
stable	oscillating	1

- are there general results along these lines?
- How important are other features of the model?
 - other arguments in the *g* function that I have ignored
 - volatility of other variables in the (richer) model

3) What should a policy maker take away?

- Paper emphasizes that "forward guidance" can create volatility
 - but is this a model of forward guidance in the usual sense(s)?
- Alternative: suppose we live in a world with real news shocks that interact with money/liquidity premia
- What should policy makers do?
 - should monetary policy react immediately to news?
 - should monetary announcements be made in reaction to news?
 - when should a statistical agency release data?
- Model may provide a platform for answering these questions