Discussion of:

Diversification Disasters

by Ibragimov, Jaffee & Walden

Todd Keister

FRBNY and EUI

June 2010

The views expressed herein are my own and do not necessarily reflect those of the Federal Reserve Bank of New York or the Federal Reserve System.
The Question

- Much discussion about the degree of *interconnectedness* among financial institutions
 - leads to systemic risk; one failure causes many others
 - Bear Stearns was thought to be “too interconnected to fail”

- But interconnectedness is the result of diversification
 - usually we think of diversification as a stabilizing force

- Paper studies a model of diversification/interconnectedness and asks:
 - when is diversification socially optimal?
 - when will it arise in equilibrium?
A simplified setup

- Consider the case of two intermediaries, no diversification
 - each earns profit x_i; fails if $x_i < -K$ (capital)
Diversification

- If intermediaries diversify, each earns $\frac{x_1 + x_2}{2}$

 - both fail if and only if $x_1 + x_2 < -2K$
Comparison

- Diversification “shifts” failures across states of nature
 - one failure occurs in fewer states, two failures in more states
Is diversification desirable?

- Depends on the cost of 1 failure vs. the cost of 2 failures
 - *and* on the probability distribution across states
The difficulty

• If the probability distribution over \((x_1, x_2)\) is fixed, this is relatively straightforward

 – integrate gain/loss from diversification using this distribution

• In a reasonably rich model, however, this distribution is *endogenous*

 – depends on investment choices

 – will in general be different in the two cases

⇒ This fact complicates the comparison substantially
What the paper does

• Sets up a model in which the distribution of x_1 and x_2 are Pareto type
 – intermediaries have fixed capital K and a VAR constraint
 – invests in a large number of correlated projects (where the correlations themselves are random)

• Looks at the limiting case of $K \to \infty$

⇒ Analysis is about the tails of Pareto-type distributions
 – works out remarkably nicely
Results

• If tails are very thin, diversification is socially optimal and occurs in equilibrium

• If tails are very fat, separation is socially optimal and occurs in equilibrium

• In between, there is a region where separation is optimal but diversification occurs in equilibrium
 – potential role for policy arises in this case

• Authors discussion regulations to prevent undesirable diversification
 – argue in favor of Glass-Steagall-like restrictions
Comments

• This is an interesting paper
 – addresses an important and timely question
 – offers a parsimonious model of portfolio choice with nontrivial implications
 – elegant analysis of tail risk

• My comments are essentially a series of questions
(1) Measuring social welfare

• Here:

\[\text{welfare} = \text{present value of all future profits from intermediation} \]

• Does this capture all of the social benefits of intermediation?

 – what about \((1 - d) c \) and losses \(> K\)?

 – more generally, if firms and consumers derive benefit …

• Would it matter for the analysis if the social cost of failure is larger?

 – would it enlarge the set of situations in which equilibrium is suboptimal?
(2) Equilibrium concept (technical)

- Paper compares:
 - payoff received by an intermediary in the separated system
 - corresponding payoff in the decentralized system

- Says separation is an equilibrium if the former is larger

- Equilibrium is usually defined in terms of unilateral deviations
 - if everyone else is separated and I diversify ...

- Is that equivalent to what is done here? Or is it different?
(3) Partial diversification

- Paper studies the cases of no diversification and full diversification
 - could the model be extended to allow partial diversification?

- Here: the equilibrium outcome is often optimal (\(\sim 2.5\) out of 3 cases)
 - but the solution is always a “corner”

- If diversification where a continuous choice, it seems like the equilibrium and optimum would diverge more often
 - might this change the policy conclusions?
(4) Policy conclusions

• Authors argue in favor of portfolio restrictions to prevent undesirable diversification ...

• ... and against focused capital requirements
 – this second argument is less clear to me

• Proposal: set K much higher for an intermediary that diversifies
 – presumably diversification is observable
 – for K_D large enough, diversification will be unattractive

• Can the model be enriched to distinguish these policies?
 – allowing partial diversification might be helpful in this regard