Discussion of:

Trading on Sunspots

by Boyan Jovanovic and Viktor Tsyrennikov

Todd Keister Rutgers University

Wharton Conference on Liquidity and Financial Crises October 10, 2014

Sunspots and bank runs

- Consider a Diamond-Dybvig model with no uncertainty
 - given the face value of deposits (c_1) , depositors play a coordination game
 - if c_1 is large enough, the bank is illiquid and the game has multiple equilibria
- If depositors observe a sunspot variable before choosing their actions:
 - > any equilibrium outcome can be assigned to any sunspot state
 - equilibrium probability of a run can be any $q \in [0,1]$
- Now suppose the bank is a player in the game
 - chooses c_1 before the sunspot state is realized
 - aims to maximize depositors' expected utility

- For a higher probability of a run \Rightarrow the bank becomes more cautious
 - sets c_1 lower to preserve resources (in case things go badly)
 - \Rightarrow becomes less illiquid

When bank is liquid, depositors have no incentive to run

 \Rightarrow there cannot be an equilibrium in which Prob (run) $> \overline{q}$

A general point

- When actions are taken before the sunspot state is realized:
 - these actions will change the subgame being played in each state
 - a sunspot equilibrium is no longer an arbitrary randomization over the equilibria of the model without sunspots
- These actions will depend on the probability of a crisis
 - Iikelihood of a crisis \Rightarrow actions \Rightarrow states in which a crisis can occur
- Result: model restricts the (sunspot) probability of a crisis in a meaningful way.

References:

Cooper & Ross (1998), Peck & Shell (2003), Ennis & Keister (2010)

This paper

- A different model, with different issues and a different mechanism
 - but the same general phenomenon appears
- The model without sunspots
 - effort choice game with strategic complementarities
 - binary choice: effort is low or high
 - > an individual agent's optimal effort choice is:

Introduce two sunspots states: $s \in \{\alpha, \beta\}$

- but no actions taken before sunspot state is realized
- look for equilibria in which agents choose High in state α and Low in β
- Optimal effort choice is now:

Trading on sunspots

- Now allow trade at t = 0 in sunspot-contingent assets
- > Paper shows that rich agents will shift wealth from state β to α
 - poor agents do the opposite (obviously)
- Look at the post-trade endowments:

If trades are large enough

... post-trade endowments will lie outside the middle region...

... changing the equilibria of the coordination game in some state(s)

Why the probabilities matter

- Equilibrium securities prices are related to the probabilities
 - if state *s* is unlikely, consumption in *s* is relatively cheap
- Focus on the rich agent:

If β is very unlikely ...

... the budget line is very steep ...

... and the post-trade endowment will remain in the middle region ...

... and the candidate equilibrium still exists.

- In contrast, if state β is very likely, the budget lines are very flat
 - the rich agent will be very wealthy in state α
 - leading her to choose L instead of H ...

... which is inconsistent with the candidate equilibrium

⇒ There cannot be an equilibrium with this probability distribution over $\{\alpha, \beta\}$

The maximum probability of a crisis

- Result: There is a maximum probability of π_{β} for which the outcome (*H* in α , *L* in β) is an equilibrium
 - post-trade endowment is on the boundary

Interpret as the upper bound on the equilibrium probability of a disaster

Can do comparative statics with this probability

Comment (1): Comparing models

- Mechanisms are very different (asset trade vs. banks), but ...
- The maximum probability of a crisis comes from similar logic
 - if the probability were larger, someone would take ex ante actions that undermine the equilibrium incentives
- Interesting difference:
 - DD: if prob(run) is high, bank becomes very safe
 - the **good** action (not run) becomes a dominant choice
 - > JT: if prob(bad state) is high, trade makes rich agents even richer in state α
 - the **bad** action (low effort) becomes the optimal choice in α
- What are the implications of this difference?
 - other types of equilibria?

(2) Incomplete markets

- Paper studies a situation with a complete set of Arrow securities
 - for <u>sunspot</u> states
- Cass (1989):

"The inherent nature of sunspot beliefs ... militates against ever having a complete arrow of Arrow-Debreu markets"

- Moreover, incomplete market may be <u>desirable</u> here
 - if underlying model is Walrasian, complete markets are good
 - Cass and Shell (1983) "sunspot-immunity" theorem
 - here: some incomplete-markets structures could conceivably Pareto dominate complete markets

(3) Financial regulation

- Can this framework generate a theory of financial regulation?
 - should we restrict trade in certain types of assets?
 - should we encourage (subsidize?) other assets?
- Tradeoff:
 - want agents to have insurance
 - but also want asset payoffs to move the economy to "good" regions
 - which may make insurance less important
- Q: For a given economy, what assets tend to raise \overline{q} ?
 - are there assets that tend to lower it?
 - what would a welfare-maximizing asset structure look like?