Central Bank Digital Currency: Information and Stability

Todd Keister Rutgers University Cyril Monnet University of Bern

Federal Reserve Bank of Boston December 2, 2021 Q: How would a CBDC affect financial stability?

- much discussion of this issue in policy circles
- but little formal analysis
- Common view: CBDC would make runs on banks more likely
 - offers depositors a more attractive safe option
 - \Rightarrow makes them more likely to withdraw at first sign of trouble
- We show: there is another side to the story
- CBDC can change the flow of information to regulators
 - leads to a faster policy response to an emerging crisis
 - this faster response reduces the incentive for depositors to run

The mechanism (1)

- We construct a model where the common concern arises
 - build on the Diamond-Dybvig framework
 - a "better" safe asset makes withdrawing early more attractive
- And where the timing of the policy response is endogenous
- In the early phases of a crisis:
 - banks and (some) depositors have private information about the quality of their assets
 - banks have an incentive to hide this information for a while (Keister & Mitkov, 2021)
 - continue operating as normal; pushes losses onto public sector
- Policy makers can eventually see where the problems are

by observing withdrawal behavior, evaluating assets ...

The mechanism (2)

- ... but doing so takes time
 - this delay in the policy reaction makes the crisis worse
 - which increases the ex ante incentive to withdraw
- CBDC provides a new source of information
 - during a run, more withdrawals are converted to CBDC
 - these flows into CBDC are observed by the central bank
- We show: with CBCD, the policy reaction comes sooner
 - this quicker response reduces early liquidation, misallocation
 - which <u>decreases</u> the incentive to withdraw early
- Competing effects; CBDC improves stability in some cases

- the environment
- equilibrium and fragility
- 2) Introducing CBDC
- 3) The information effect
- 4) Optimal CBDC policy
- 5) Conclusion

- ▶ *t* = 1,2
- Depositors: $i \in [0,1]$ in each of many locations
 - begin with 1 unit of good deposited in bank in their location
 - desire consumption at t = 2
- Investment technology:
 - goods not consumed at t = 1 earn return R > 1 at t = 2
- Government:
 - endowed with resources τ at t = 1
 - can be used to provide a public good valued by all depositors

- At t = 1, a fraction π of depositors will be relocated
 - unable to contact their bank at $t = 2 \rightarrow$ must withdraw at t = 1 (as in Champ, Smith, and Williamson, 1997)
- Earn an idiosyncratic return ρ on goods carried to new location
 - $\rho \sim \left[\underline{\rho}, \overline{\rho}\right]$ with continuous distribution *F*
 - idea: movers are withdrawing for transaction purposes
 - \blacktriangleright ρ : how well an individual is served by current payment methods
- Relocation status and ρ are private information
 - banks allow depositors to choose when to withdraw (t = 1 or t = 2)
 - creates the possibility of a run, as in Diamond & Dybvig (1983)

Banking arrangement

- Banks maximize expected utility of depositors
- Choose: how much to pay depositors who withdraw at t = 1
 - same for all such depositors, since ρ is private information
- In normal times, a bank solves:

$$\max \pi \int_{\underline{\rho}}^{\overline{\rho}} u(\rho x_1) dF(\rho) + (1 - \pi)u(x_2)$$

s.t.
$$\pi x_1 + (1 - \pi)\frac{x_2}{R} \le 1$$
 solution: (x_1^*, x_2^*)

- Very similar to a standard DD allocation problem
 - interpretation: (x_1^*, x_2^*) is "face value" of the deposit

- Aggregate state realized at the beginning of t = 1
- Two possibilities:
 - normal times: all bank assets are unchanged
 - crisis: a fraction n > 0 of banks each lose a fraction σ of assets
- Depositors observe the realized loss of their own bank
 - can condition withdrawal decision on this information
- Baseline case: regulators observe the aggregate state ...
- But observe bank-specific information with a delay
 - can make inferences based on equilibrium behavior (withdrawals)

• Fiscal authority:

- endowed with τ units of good at t = 1 ("fiscal capacity")
- divided between public good and bailouts to banks facing losses
- no commitment: bailouts are chosen to maximize ex post welfare
- Regulator:
 - can restrict the payments made by banks to depositors
 - policy must be measurable w.r.t. the regulator's information set
 - if no run: observe bank's status after π withdrawals
 - observes withdrawals stop; also observes value of assets
 - if a run is detected: bank is placed in resolution (and run ends)
 - \blacktriangleright with no CBDC, a run is detected ... after π withdraals

- Note: no decisions are made before shocks are realized
 - > ex ante probabilities of the aggregate states do not matter

- 1) A baseline model
 - the environment
 - equilibrium and fragility
- 2) Introducing CBDC
- 3) The information effect
- 4) Optimal CBDC policy
- 5) Conclusion

- We assume depositors do not run on sound banks
 - and that sound banks receive no bailouts
 - \Rightarrow optimal for sound banks to follow (x_1^*, x_2^*)
- A weak bank anticipates being bailed out \rightarrow distorts incentives
 - if it pays more than x_1^* , regulator would intervene
 - could pay $< x_1^*$ ("bail in"); focus on case where this is <u>not</u> optimal
 - \Rightarrow weak banks pay x_1^* until placed in resolution
- Keister & Mitkov focus on the "bail-in game"
 - weak banks best choice of x_1^* depends on choices of others
- Here: assume no bail-in is a dominant strategy
 - focus on the withdrawal game played by depositors

Q: Do depositors run on weak banks?

- focus on non-movers (movers always withdraw at t = 1)
- A non-mover in a weak bank compares:
 - withdraw at t = 1: receive x_1^* , store until t = 2 at rate $\rho_N < 1$
 - wait until t = 2: receive payment from bank in resolution process
 - depends on the amount of resources remaining in the bank
 - and on the bailout payment the bank receives
- Let $\alpha_i \in [0,1]$ denote prob of withdrawing at t = 1 for depositor *i*
 - $\alpha_i = 0 \Rightarrow$ "not run" and $\alpha_i = 1 \Rightarrow$ "run"
 - we allow for mixed strategies (we'll see why later on)
 - focus on symmetric outcomes across weak banks

- A fraction $\alpha = \int_0^1 \alpha_i di$ of non-movers attempt to withdraw early
- After π withdrawals, bank is placed into resolution
 - fraction of remaining depositors who are movers:

$$\frac{\pi\alpha}{\pi + \alpha(1 - \pi)} \equiv \hat{\pi}(\alpha; \theta)$$

Resolution authority will solve:

$$\max_{\{x_1, x_2, b\}} n(1-\pi) \left\{ \hat{\pi}(\alpha) \int_{\underline{\rho}}^{\overline{\rho}} u(\rho x_1) dF(\rho) + (1-\hat{\pi}(\alpha)) u(x_2) \right\} + v(\tau - nb)$$

s.t. $(1-\pi) \left\{ \hat{\pi}(\alpha) x_1 + (1-\hat{\pi}(\alpha)) \frac{x_2}{R} \right\} \le 1 - \sigma - \pi x_1^* + b$

• Solution: $(\hat{x}_1(\alpha), \hat{x}_2(\alpha))$

An equilibrium is a profile of strategies $\alpha^*: [0,1] \rightarrow [0,1]$ such that:

$$\alpha_i^* \begin{cases} = 0 \\ \in [0,1] \\ = 1 \end{cases} \quad \text{if} \quad \rho_N x_1^* \begin{cases} < \\ = \\ > \end{cases} \hat{x}_2(\alpha^*)$$

- focus is symmetric across depositors, weak banks
- If (n, σ) are small:
 x̂₂ in resolution is > x₁^{*}
 unique equilibrium, no bank runs
 If (n, σ) are large:
 x̂₂ < x₁^{*} for all α → running is D.S.
- In between: multiple equilibria

- the environment
- equilibrium and fragility
- 2) Introducing CBDC
- 3) The information effect
- 4) Optimal CBDC policy
- 5) Conclusion

- Central bank has a storage technology between t = 1 and t = 2
 - earns a return R_{CB} . Baseline case: set $R_{CB} = 1$
- Depositors who withdraw from bank can deposit in CBDC
 - \blacktriangleright earn an interest rate ρ_{CB} from central bank
 - available to both movers and non-movers
 - baseline case: set $\rho_{CB} = 1 \ (> \underline{\rho})$
- Interpretation:
 - for some people (low ρ), CBDC is a better way of transacting
 - for others (high ρ), CBDC is not useful in normal times
 - but CBDC is available to all agents as a store of value

Availability of CBDC changes the bank's problem

some movers ...

$$\max \pi \left(u(\rho_{CB}x_{1})F(\rho_{CB}) + \int_{\rho_{CB}}^{\overline{\rho}} u(\rho x_{1})dF(\rho) \right) + (1 - \pi)u(x_{2})$$

... now earn $\rho_{CB} > \rho$ solution:
 $s.t. \quad \pi x_{1} + (1 - \pi)\frac{x_{2}}{R} \le 1$ $(x_{1}^{*}(\rho_{CB}), x_{2}^{*}(\rho_{CB}))$

► CRRA > 1 implies x_1^* is decreasing in ρ_{CB} ($\Rightarrow x_2^*$ is \uparrow in ρ_{CB})

• but $\rho_{CB} x_1^*(\rho_{CB})$ is increasing in ρ_{CB}

⇒ CBDC leads banks to do less maturity transformation

seems like an interesting (new?) point

Resolution and the incentive to run

- CBDC changes the resolution problem in a similar way
 - new solution: $(\hat{x}_1(\alpha, \rho_{CB}), \hat{x}_2(\alpha, \rho_{CB}))$
- More directly, it changes the incentives of non-movers

$$\alpha_{i} \begin{cases} = 0 \\ \in [0,1] \\ = 1 \end{cases} \quad \text{if} \quad \rho_{CP} x_{1}^{*}(\rho_{CB}) \begin{cases} < \\ = \\ > \end{cases} \hat{x}_{2}(\alpha, \rho_{CB}) \\ \text{concern in policy} \\ \text{discussions} \end{cases}$$

- Model captures the concern that CBDC makes withdrawing early more attractive
 - of course, the payoffs x_1^* and \hat{x}_2 adjust as well
 - but these effects appear to be secondary

Example

- Result: When the policy reaction to a run occurs after π withdrawals, CBDC increases the fragile sets
 - both "run" and "run+ME"
- Result holds in this example
 - conjecture: the result holds in general as well

- the environment
- equilibrium and fragility
- 2) Introducing CBDC
- 3) The information effect
- 4) Optimal CBDC policy
- 5) Conclusion

Q: How might CBDC affect the timing of the policy reaction?

- Assume the CB an observe flows into CBDC *from each bank*
 - plan to relax this assumption later on
- If there is no run on the bank:
 - all withdrawals from the bank are by movers
 - \blacktriangleright those movers with $\rho < \rho_{CB}$ will use CBDC

$$\pi \int_{\underline{\rho}}^{\rho_{CB}} dF(\rho) = \pi F(\rho_{CB})$$

- If deposits in CBDC go above this level ...
 - some non-movers are withdrawing \rightarrow a run must be underway

- How quickly can the CB detect a run is underway?
- After θ withdrawals, where θ is the solution to:

withdrawals
$$\theta \left\{ \begin{array}{l} \frac{\pi F(\rho_{CB}) + \alpha(1-\pi)}{\pi + \alpha(1-\pi)} \right\} = \pi F(\rho_{CB}) \\ fraction who \\ convert to CBDC \end{array}$$

 $\theta(\alpha, \rho_{CB}) = \frac{(\pi + \alpha(1-\pi))F(\rho_{CB})}{\pi F(\rho_{CB}) + \alpha(1-\pi)}\pi \quad < \pi \text{ when } \alpha > 0$

- Can show that $\theta(\alpha, \rho_{CB})$ is:
 - decreasing in $\alpha \rightarrow$ a larger run will be detected more quickly
 - increasing in $\rho_{CB} \rightarrow$ more CBDC use in normal times makes a run harder to detect

Notice the role of sequential service

- traditionally: detect a run by counting withdrawals as they occur
- here: detect a run by counting deposits into CBDC as they occur
 - this second way is always faster ($\theta < \pi$)
 - how much faster depends on how much use the CBDC normally has
- When many other agents are withdrawing (α is large) ...
 - the run will be detected more quickly \rightarrow faster resolution
 - payoff of waiting \hat{x}_2 will be larger \rightarrow less incentive to join the run
- Endogenous θ introduces a strategic substitutability
 - withdrawing early may become <u>less</u> attractive if others do so
 - can eliminate the multiplicity of equilibrium

Fragility

- Information effect reduces fragility (relative to middle case)
 - conjecture: this result is true in general
- Net effect of CBDC can be lower fragility (in examples)
- May be regions with a unique equilibrium in mixed strategies
 - withdrawal decisions are substitutes rather than complements

- the environment
- equilibrium and fragility
- 2) Introducing CBDC
- 3) The information effect
- 4) Optimal CBDC policy
- 5) Conclusion

- Now: allow the CB to pay interest on CBDC
 - CB earns a return $R_{CB} > 1$ on goods held from t = 1 to t = 2
 - chooses an interest rate $\rho_{CB} \in [1, R_{CB}]$ to pay to depositors
 - any seignorage revenue is used for public good/bailouts
- Represents a range of design choices that affect how useful CBDC is to agents
 - methods of access, transaction fees, etc.
- Policy tradeoff arises
 - higher ρ_{CB} encourages agents to use this better technology (good)
 - but implies that runs on weak banks will be detected more slowly
 - and may increase equilibrium fragility

Example

• Higher ρ_{CB} increases fragility

- non-movers find withdrawing more attractive
- and higher use in normal times increases θ

 \rightarrow slower policy response to a run

- Optimal policy balances these concerns
 - in some cases: set ρ_{CB} as high as possible without inducing a run
 - are there any general policy results?

- the environment
- equilibrium and fragility
- 2) Introducing CBDC
- 3) The information effect
- 4) Optimal CBDC policy
- 5) Conclusion

- Widely understood that CBDC can change withdrawal incentives
- We emphasize: it also changes regulators' information
 - can lead to a quicker policy response to a crisis
 - that quicker response that decrease the incentive to run
- Policy implications:
 - CBDC design should generate detailed information
 - account rather than token based?
 - Might not want heavy CBDC using in normal times
 - because it makes runs more difficult to detect