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This appendix provides proofs of the propositions presented in the paper.

Proposition 1. (Planner’s allocation) The efficient plan
(
h∗, ĥ∗, b∗

)
sets

h∗ = ĥ∗ =

{
λ
λ∗

}
and b∗ =

{
0

λ− λ∗
}

as λ

{
≤
>

}
λ∗.

We first establish a key property of the efficient plan in the following lemma.

Lemma 1. The efficient plan satisfies h∗ = ĥ∗ for all λ ∈ Λ.

Proof. To begin, note that the resource constraint (4) will hold with equality for all λ at
the solution to the planner’s problem. The non-negativity restrictions then imply that the
planner will set h = ĥ = b = 0 when λ = 0. When there is no loss, investors are neither
bailed in nor bailed out.

For λ > 0, let θ denote the multiplier on the resource constraint (4). We can then write
the first-order conditions for the optimal choice of h as2

u′ ((1− h)c∗1) ≥ θ and h [u′ ((1− h)c∗1)− θ] = 0 (20)

and for the optimal choice of ĥ as

u′
(

(1− ĥ)c∗2

)
≥ θ

R
and ĥ

[
u′
(

(1− ĥ)c∗2

)
− θ

R

]
= 0. (21)

We will show that the solutions to these two sets of equations are necessarily the same,
considering the cases of boundary and interior solutions separately.

First, suppose the solution has h = 0. Then equation (20) implies

u′ (c∗1) ≥ θ.

The reference allocation (c∗1, c
∗
2) is characterized by the standard optimality condition in the

2Note that the Inada conditions on the function u imply that the upper bounds on h (φ) and ĥ (φ) in equation
(3) will never bind at the solution to the problem.
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Diamond-Dybvig framework,
u′ (c∗1) = Ru′ (c∗2) .

Combining these two equations yields

u′ (c∗2) ≥ θ

R

and, therefore, the unique ĥ (φ) satisfying the conditions in equation (21) is ĥ (φ) = 0.
Next, suppose the solution has h > 0. Then equation (20) implies

u′ ((1− h)c∗1) = θ.

Given that the utility function u is of the constant-relative-risk-aversion form, the ratio of
marginal utilities depends only on the ratio of consumption levels, that is, we have

u′ (αc∗1)

u′ (αc∗2)
=
u′ (c∗1)

u′ (c∗2)
= R (22)

for any α > 0. These last two equations imply

u′ ((1− h)c∗2) =
θ

R

and, therefore, setting ĥ = h is the unique solution to equation (21). Combining these two
cases, we have shown that ĥ = h holds for all λ, which establishes the result.

Proof of Proposition 1. Using the result from Lemma 1 and the simplified resource constraint
in equation (7), we can write the planner’s problem as choosing the bail-in h to maximize

πu
(
(1− h)c∗1

)
+ (1− π)u

(
(1− h)c∗2

)
− µ[λ− h],

where the non-negativity constraints for bail-ins and bailouts can be written as

0 ≤ h ≤ λ. (23)

The objective function is strictly concave in h and has slope

−
[
πu′
(
(1− h)c∗1

)
c∗1 + (1− π)u′

(
(1− h)c∗2

)
c∗2
]

+ µ

or

−u′
(
(1− h)c∗1

) [
πc∗1 + (1− π)

u′
(
(1− h)c∗2

)
u′
(
(1− h)c∗1

)c∗2
]

+ µ.

Using equation (22) and the resource constraint for the reference allocation in equation (3),
it is straightforward to show the term in square brackets reduces to 1. Using equation (8)

2



to replace µ, we can then write the slope as

−u′
(
(1− h)c∗1

)
+ u′

(
(1− λ∗)c∗1

)
.

If λ ≤ λ∗, this slope is non-negative when evaluated at the upper bound for h in equation
(23) and, therefore, the solution is h = λ. If λ > λ∗, the constraints in equation (23) do not
bind and the solution is h∗ = λ∗. In both cases, the planner’s optimal bailout is determined
by setting h = h∗ in equation (7) and solving for b∗.

Proposition 2. (Bailout and remaining bail-in) Given h and y, the bail-in of remain-
ing investors ĥ and bailout b satisfy:

(i) if ĥNB (h, y) ≤ λ∗, then ĥ (h, y) = ĥNB (h, y) and b (h, y) = 0
(ii) if ĥNB (h, y) > λ∗, then ĥ(h, y) = λ∗ and and the bailout satisfies equation (14).

Proof. As a first step, we use equation (11) to write the bank’s marginal value of resources
after π withdrawals as

V1

(
ψ(h, b), y

)
≡
{

u′
(
Rψ(h, b)

)
R

πu′
(
ψ(h, b)c∗1

)
c∗1 + (1− π)u′

(
ψ(h, b)c∗2

)
c∗2

}
as

{
y = 2
y = 1

}
. (24)

This expression together with the definition of ψ in equation (9) shows that V1 is strictly
decreasing in b for both values of y. In what follows, we use the expression to establish the
two parts of the proposition in turn.

Part (i): First suppose y = 2. Then ĥNB(h, 2) ≤ λ∗ implies(
1− ĥNB(h, 2)

)
c∗2 ≥ (1− λ∗) c∗2.

Using equations (9) and (13), we can rewrite the left-hand side of the inequality in terms of
the bank’s remaining resources ψ,

Rψ(h, 0) ≥ (1− λ∗) c∗2,

which implies
u′
(
Rψ(h, 0)

)
R ≤ u′

(
(1− λ∗) c∗2

)
R.

Using equation (22), we can rewrite the right-hand side of this inequality as

u′
(
(1− λ∗) c∗2

)
R = u′

(
(1− λ∗) c∗1

)
= µ.

Combining these last two equations with equation (24) yields

V1

(
ψ(h, 0), 2

)
≤ µ,

which implies b∗ = 0 is the unique solution to the first-order condition in equation (12).

Now suppose y = 1. In this case, we use ĥNB(h, 1) ≤ λ∗ to write both(
1− ĥNB(h, 1)

)
c∗1 ≥ (1− λ∗) c∗1 and

(
1− ĥNB(h, 1)

)
c∗2 ≥ (1− λ∗) c∗2.
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Using equations (9) and (13), we can write the left-hand side of these inequalities in terms
of the bank’s remaining resources ψ,

ψ(h, 0)c∗1 ≥ (1− λ∗) c∗1 and ψ(h, 0)c∗2 ≥ (1− λ∗) c∗2.

The first of these two inequalities implies

u′
(
ψ(h, 0)c∗1

)
c∗1 ≤ u′

(
(1− λ∗) c∗1

)
c∗1 = µc∗1, (25)

while the second implies

u′
(
ψ(h, 0)c∗2

)
c∗2 ≤ u′

(
(1− λ∗) c∗2

)
c∗2 (26)

= u′
(
(1− λ∗) c∗1

)c∗2
R

= µ
c∗2
R

where the first equality on the second line uses equation (22). Combining equations (25) and
(26) yields

πu′
(
ψ(h, 0)c∗1

)
c∗1 + (1− π)u′

(
ψ(h, 0)c∗2

)
c∗2 ≤ µ

(
πc∗1 + (1− π)

c∗2
R

)
= µ,

where the last equality uses the resource constraint in equation (3). Combining this inequality
with equation (24) yields

V1

(
ψ(h, 0), 1

)
≤ µ,

which implies b∗ = 0 is the unique solution to the first-order condition in equation (12) when
y = 1 as well. When b∗ = 0, the remaining investors will be bailed in at rate ĥNB as defined
in equation (13).

Part (ii): When ĥNB(h, 1) > λ∗, the steps above show that V1(ψ(h, b = 0), y) > µ and,
therefore, the solution to the fiscal authority’s bailout choice problem is interior. In this
case, the first-order condition in equation (12) holds with equality,

V1

(
ψ(h, b), y

)
= µ = u′

(
(1− λ∗) c∗1

)
.

If y = 2, this equation can be written as

u′
(
Rψ(h, b)

)
R = u′

(
(1− λ∗) c∗1

)
= u′

(
(1− λ∗) c∗2

)
R,

where the last equality uses equation (22). Using the monotonicity of u′, we have

Rψ(h, b) = (1− λ∗) c∗2.

Using the definition of ψ in equation (9), we can rewrite this equation as

R
1− λ− π(1− h)c∗1 + b

1− π
= (1− λ∗) c∗2.
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Solving for b yields

b = (1− π)(1− λ∗)c
∗
2

R
− (1− π)

(
1− λ− π(1− h)c∗1

1− π

)
= (1− π)

c∗2
R

(
1− λ∗ − R

c∗2

1− λ− π(1− h)c∗1
1− π

)
.

Finally, using equations (3) and (13), we can rewrite this equation as

b = (1− πc∗1)
(
ĥNB(h, 2)− λ∗

)
,

as desired.

The steps for y = 1 are similar. Equation 6 can be written as

πu′
(
ψ(h, b)c∗1

)
c∗1 + (1− π)u′

(
ψ(h, b)c∗2

)
c∗2 = u′

(
(1− λ∗) c∗1

)
.

Using equation (22), we can write this equation as

u′
(
ψ(h, b)c∗1

)(
πc∗1 + (1− π)

c∗2
R

)
= u′

(
(1− λ∗) c∗1

)
.

Using equation (3) and the monotonicity of u′, this equation implies

ψ(h, b) = 1− λ∗,

or, replacing ψ using equation (9),

1− λ− π(1− h)c∗1 + b

1− π
= 1− λ∗.

Solving for b yields

b = (1− π)

(
1− λ∗ − 1− λ− π(1− h)c∗1

1− π

)
= (1− π)

(
ĥNB(h, 1)− λ∗

)
,

as desired.

Proposition 3. (Decentralized allocation in region 1) There exists λe1 < λ∗ such
that, when µ ≤ µ1, the bank is bailed out if and only if λ > λe1. In this region, the bank sets
he = 0, patient investors do not run (ye = 2), and the equilibrium bailout payment is

be = λ− λ∗ + λ∗πc∗1 > b∗.
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Proof. In states where the bank is bailed out, it will set its initial bail-in h either to zero or
to the lowest value that prevents a run, h. The cutoff µ1 is defined so that µ ≤ µ1 implies
h = 0; it follows immediately that the bank will set he = 0 in these states and that patient
investors do not run (ye = 2). ix or

be = (1− πc∗1)(1− λ∗)− (1− πc∗1)
R

(1− π)c∗2
(1− λ− πc∗1).

Using the resource constraint in equation (3) and regrouping terms yields

be = (1− λ∗)− (1− λ∗)πc∗1 − (1− λ− πc∗1)

or
be = λ− λ∗ + λ∗πc∗1,

as stated in the proposition. The planner’s bailout b∗ is shown in Proposition 1 to equal
λ−λ∗. Since λ∗, π, and c∗1 are all strictly positive, the decentralized bailout is strictly larger
than b∗.

What remains is to be shown that (i) there exists a cutoff λe1 such that the bank is bailed
out if and only if λ > λe1 and (ii) this cutoff is below the efficient level λ∗. In states where
the bank is not bailed out, it will set h = ĥ = λ. The bank will choose h = 0, and hence be
bailed out, if and only if doing so yields higher expected utility, that is,3

π u (c∗1)︸ ︷︷ ︸
h=0

+(1− π)u ((1− λ∗)c∗2)︸ ︷︷ ︸
bailed out

> π u ((1− λ)c∗1)︸ ︷︷ ︸
h=λ

+(1− π)u ((1− λ)c∗2)︸ ︷︷ ︸
not bailed out

Using the form of the utility function in equation (1), we can factor out the (1− λ) term on
the right-hand side,

π u (c∗1) + (1− π)u
(
(1− λ∗)c∗2

)
> (1− λ)1−γ(πu (c∗1) + (1− π)u (c∗2)

)
and solve for

λ > 1−
(
π u (c∗1) + (1− π)u ((1− λ∗)c∗2)

πu (c∗1) + (1− π)u (c∗2)

) 1
1−γ

≡ λe1.

To compare λe1 with λ∗, we use the explicit solution to the planner’s problem,

c∗1 =
1

π + (1− π)R
1−γ
γ

and c∗2 =
R

1
γ

π + (1− π)R
1−γ
γ

(27)

to obtain

λe1 = 1−

(
π + (1− π)(1− λ∗)1−γR

1−γ
γ

π + (1− π)R
1−γ
γ

) 1
1−γ

3The inequality is strict because we assume the bank chooses the larger bail-in if it is exactly indifferent.
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Our assumption in equation (8) implies λ∗ > 0 and, therefore,

λe1 < 1−

(
π(1− λ∗)1−γ + (1− π)(1− λ∗)1−γR

1−γ
γ

π + (1− π)R
1−γ
γ

) 1
1−γ

= 1−
(
(1− λ∗)1−γ) 1

1−γ

= λ∗,

as desired.

Proposition 4. (Decentralized allocation in region 2) There exist µ2 > µ1 and
λe2 < λ∗ such that, when µ1 < µ < µ2, the bank is bailed out if and only if λ > λe2. In this
case, the bank sets he = h > 0, patient investors do not run (ye = 2), and the equilibrium
bailout payment is

be = λ− λ∗ + (λ∗ − h) πc∗1 > b∗.

Proof. When µ > µ1, h is strictly positive. In states where it is bailed out, the bank must
choose between setting h = h to prevent a run and setting h = 0 and provoking a run. If
will choose h = h if

π u
(
(1− h)c∗1

)︸ ︷︷ ︸
h=h

+ (1− π)u
(
(1− λ∗)c∗2

)︸ ︷︷ ︸
all patient

≥ π u (c∗1)︸ ︷︷ ︸
h=0

+(1− π)
(
πu
(
(1− λ∗)c∗1

)
+ (1− π)u

(
(1− λ∗)c∗2

))︸ ︷︷ ︸
mix of impatient and patient

(28)

The definition of h in equation (17) implies

(1− h)c∗1 = (1− λ∗)c∗2, (29)

so we can write the previous inequality as

u
(
(1− λ∗)c∗2

)
≥ πu (c∗1) + (1− π)

(
πu
(
(1− λ∗)c∗1

)
+ (1− π)u

(
(1− λ∗)c∗2

))
Using the form of the utility function in equation (1), we have

(1− λ∗)1−γu(c∗2) ≥ πu (c∗1) + (1− π)(1− λ∗)1−γ
(
πu(c∗1) + (1− π)u(c∗2)

)
or, bearing in mind that γ > 1 and u(·) < 0,

(1− λ∗)1−γ ≤ u(c∗1)

(2− π)u(c∗2)− (1− π)u(c∗1)
.
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Again using γ > 1, this expression can be written as

1− λ∗ ≥
(

u(c∗1)

(2− π)u(c∗2)− (1− π)u(c∗1)

) 1
1−γ

Next, we use equation (8) to replace λ∗ on the left-hand side and equation (27) to replace
c∗1 and c∗2 on the right-hand side, we have

1

µ
1
γ c∗1
≥

(
1

(2− π)R
1−γ
γ − (1− π)

) 1
1−γ

or

µ
1
γ c∗1 ≤

(
(2− π)R

1−γ
γ − (1− π)

) 1
1−γ

or

µ ≤ R (c∗1)−γ
(

(2− π)− (1− π)R
γ−1
γ

) γ
1−γ︸ ︷︷ ︸

>1

≡ µ2.

Given µ1 = (c∗1)−γ, the expression above shows µ2 > µ1 holds.
The argument above establishes that when µ ∈ (µ1, µ2], the bank will set h = h > 0 and

patient investors will not run (ye = 2) in states where the is bailed out. Substituting these
values into the expression for b(h, y) in equation (14) yields

be = (1− πc∗1)

(
1− R

c∗2

1− λ− π(1− h)c∗1
1− π

− λ∗
)
.

We can rewrite this expression as

be = (1− πc∗1)(1− λ∗)− (1− πc∗1)
R

(1− π)c∗2
(1− λ− π(1− h)c∗1),

or, using the resource constraint in equation (3) and regrouping terms,

be = (1− λ∗)− (1− λ∗)πc∗1 − (1− λ) + π(1− h)c∗1),

which simplifies to
be = λ− λ∗ + (λ∗ − h)πc∗1.

Using b∗ = λ− λ∗ and h < λ∗, we have be > b∗.
What remains is to show that (i) there exists a cutoff λe2 such that the bank is bailed out

if and only if λ > λe2 and (ii) this cutoff is below the efficient level λ∗. The bank will choose
h = h, and hence be bailed out, rather than setting h = ĥ = λ if and only if
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π u ((1− h)c∗1)︸ ︷︷ ︸
h=h

+(1− π)u ((1− λ∗)c∗2)︸ ︷︷ ︸
bailed out

> π u ((1− λ)c∗1)︸ ︷︷ ︸
h=λ

+(1− π)u ((1− λ)c∗2)︸ ︷︷ ︸
not bailed out

Using equation (29) and the form of the utility function in equation (1), we can write this
inequality as

(1− λ∗)1−γu (c∗2) > (1− λ)1−γ(πu (c∗1) + (1− π)u (c∗2)
)

or, bearing in mind that γ > 1 and u(·) < 0,

1− λ < (1− λ∗)
(
π
u(c∗1)

u(c∗2)
+ (1− π)

) 1
γ−1

or

λ > 1− (1− λ∗)
(
π
u(c∗1)

u(c∗2)
+ (1− π)

) 1
γ−1

︸ ︷︷ ︸
<1

≡ λe2.

Note that λe2 < 1− (1− λ∗) = λ∗ is immediate from the expression above.

Proposition 5. (Decentralized allocation in region 3) There exists λe3 < λ∗ such that,
when µ > µ2, the bank is bailed out if and only if λ > λe3. In this case, the bank sets he = 0,
patient investors run (ye = 1), and the equilibrium bailout payment is

be = λ− λ∗ + λ∗πc∗1 + (1− λ∗)π(c∗1 − 1).

Proof. When µ > µ2, the proof of Proposition 4 shows that, in states where the bank is
bailed out, the inequality in equation (28) is reversed, so the bank will set he = 0 and
patient investors will run (ye = 2). Substituting these values into the expression for b(h, y)
in equation (14) yields

be = (1− π)

(
1− 1− λ− πc∗1

1− π
− λ∗

)
= λ− λ∗ + π

(
c∗1 − (1− λ∗)

)
= λ− λ∗ + λ∗πc∗1 + (1− λ∗)π(c∗1 − 1)︸ ︷︷ ︸

extra due to run

.

This expression makes clear that be is strictly greater than b∗ = λ− λ∗.
What remains is to be shown that (i) there exists a cutoff λe3 such that the bank is bailed

out if and only if λ > λe1 and (ii) this cutoff is below the efficient level λ∗. The bank will set
h = 0 and be bailed out rather than choosing h = λ if and only if
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π u(c∗1)︸ ︷︷ ︸
h=0

+ (1− π)
(
πu
(
(1− λ∗)c∗1

)
+ (1− π)u

(
(1− λ∗)c∗2

))︸ ︷︷ ︸
mix of impatient and patient; bailed out

> π u ((1− λ)c∗1)︸ ︷︷ ︸
h=λ

+ (1− π) u ((1− λ)c∗2)︸ ︷︷ ︸
all patient; no bailout

Using the form of the utility function in equation (1), we can write this inequality as

πu(c∗1) + (1− λ∗)1−γ(1− π)
(
πu(c∗1) + (1− π)u(c∗2)

)
> (1− λ)1−γ(πu(c∗1) + (1− π)u(c∗2)

)
or

(1− λ)1−γ >
πu(c∗1) + (1− λ∗)1−γ(1− π)

(
πu(c∗1) + (1− π)u(c∗2)

)
πu(c∗1) + (1− π)u(c∗2)

or, since γ > 1,

(1− λ) <

(
πu(c∗1) + (1− π)u(c∗2)

πu(c∗1) + (1− λ∗)1−γ(1− π)
(
πu(c∗1) + (1− π)u(c∗2)

)) 1
γ−1

or

λ > 1−

(
πu(c∗1) + (1− π)u(c∗2)

πu(c∗1) + (1− λ∗)1−γ(1− π)
(
πu(c∗1) + (1− π)u(c∗2)

)) 1
γ−1

≡ λe3.

To compare λe3 with the efficient bailout cutoff λ∗, we use the fact that µ > µ2 implies the
inequality in equation (28) is reversed, which implies

λe3 < 1−

(
πu(c∗1) + (1− π)u(c∗2)

πu
(
(1− h)c∗1

)
+ (1− π)u

(
(1− λ∗)c∗2

)) 1
γ−1

.

Using equation (29) to replace h, we have

λe3 < 1−
(
πu(c∗1) + (1− π)u(c∗2)

(1− λ∗)1−γu(c∗2)

) 1
γ−1

.

= 1−
(
π

u(c∗1)

u(c∗2) + (1− π)

) 1
γ−1

(1− λ∗)

< 1− (1− λ∗) = λ∗.

We have, therefore, established that the decentralized bailout cutoff λe3 is below the efficient
cutoff λ∗, as desired.
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Proposition 6. (Optimal policy in region 1) If µ ≤ µ1, then D∗ = [h∗1, 1] with h∗1 > 0.

We begin with two lemmas that establish technical properties of (i) withdrawal behavior
and bailouts as functions of the bank’s choice of initial bail-in h, and (ii) the solution to the
regulator’s choice problem.

Lemma 2. The function y(h) in equation (15) is weakly increasing. The composite function
b (h, y(h)) defined by equations (14) and (15) is decreasing in h and is strictly decreasing
whenever b(h, y(h)) > 0.

Proof. For the first part of the lemma, equation (13) shows that ĥNB(h, 2) is strictly de-
creasing in h. The right-hand side of the inequality in equation (15) is, therefore, weakly
increasing in h, while the left-hand side is strictly decreasing. Moreover, λ∗ < 1 implies
y(h) = 2 will always hold for h sufficiently close to 1. If follows that either (i) y(h) = 2 for
all h ∈ [0, 1] or (ii) y(h) = 1 for h < x and y(h) = 2 for h ≥ x for some x ∈ (0, 1); in both
cases, y(h) is weakly increasing. Intuitively, a larger bail-in always decreases the incentive
for patient investors to run.

For the second part of the lemma, we first show b(h, y) is decreasing in h holding y fixed.
For either value of y, equation (13) shows ĥNB(h, y) is strictly decreasing in h. Equation (14)
then shows that for any h′ > h, we have b(h′, y) ≤ b(h, y) for any y, with strict inequality if
b(h, y) > 0. Intuitively, if the bank paid less to the investors who have already withdrawn,
it receives a smaller bailout.

We next show b(h, y) is decreasing in y. Using c∗2 < R in equation (13) shows that
ĥNB(h, y) decreases as we move from y = 1 to y = 2 for any h. Using this fact in equation
(14), together with c∗1 > 1, implies we have b(h, 2) ≤ b(h, 1) for any h. Intuitively, the bank
receives a smaller bailout if there is no run.

Combining these two results with the first part of the lemma shows that for any h′ > h,
we have

b (h, y(h)) ≥ b (h′, y(h)) ≥ b (h′, y(h′)) ,

where the first inequality is strict if b (h, y(h)) > 0. Intuitively, a higher bail-in h leaves the
bank with more resources and may, in addition, prevent a run. Both of these effects decrease
the bailout payment it receives.

Lemma 3. For any closed delegation set D, (i) a solution to the bank’s maximization problem
(18) exists for every λ ∈ Λ, and (ii) there exists λeD ∈ Λ such that the bank is bailed out in
this solution if and only if λ > λeD.

Proof. Part (i): For any fixed λ ∈ Λ, the function WB(h;λ) defined in equation (16) is
continuous in h except at points where y(h) changes value. Lemma 2 shows that y(h)
changes value at most once as h increases from 0 to 1: if y(0) = 1, the value changes to
y(h) = 2 when h reaches the point where withdrawing early is no longer a strictly dominant
strategy. As a result, WB is an upper semi-continuous function of h on the unit interval and,
therefore, attains a maximum on any compact subset D.

Part (ii): Suppose the bank is not bailed out under its optimal choice heD(λ) for some λ. We
will show that the bank is also not bailed out under its optimal choice for any λ′ < λ. It
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then follows that the set of φ for which the bank is not bailed out is an interval of the form
[0, λeD] for some λeD ∈ Λ.

Equations (13) and (15) show that when λ decreases, the set of h that lead to a bailout
becomes weakly smaller. If there is no choice h ∈ D that leads to a bailout for realization
λ, therefore, the same is true for any λ′ < λ and the result is established. If there are some
h ∈ D that lead to a bailout in state λ, let ĥ(λ) denote the best such choice. Since heD is an
optimal choice, we clearly have

WB(heD(λ);λ) ≥ WB(ĥ(λ);λ).

Now consider any λ′ < λ. It is straightforward to show that WB(h;λ) is non-increasing in λ
(holding h fixed) so we have

WB(heD(λ′);λ′) ≥ WB(heD(λ);λ′) ≥ WB(heD(λ);λ).

What remains to be shown is that heD(λ′) does not lead to a bailout. Let ĥ(λ′) denote the best
choice that does lead to a bailout.4 Because the set of h that lead to a bailout is increasing
in λ, ĥ(λ′) would have also led to a bailout under the original realization. Moreover, when
the bank is bailed out, its payoff is independent of λ, so we have

WB(ĥ(λ′);λ′) = WB(ĥ(λ′);λ) ≤ WB(ĥ(λ);λ).

Combining the above inequalities shows WB(heD(λ′);λ′) ≥ WB(ĥ(λ′);λ′), meaning the bank
is not bailed out under its optimal choice for λ′ and we have established the result.

Proof of Proposition 6. The proof is divided into two steps. We first show the optimal
delegation set must be an interval of the form [h1, 1] for some h1 ≥ 0. We then show this
lower bound is strictly positive.

Step (i): Show D∗ = [h1, 1] for some h1 ≥ 0.

Given any compact delegation set D, define a new set D̂ ≡ [h1, 1] where h1 is the
smallest element of D. To establish this step, we show that D̂ weakly dominates D, that is,
W(D̂) ≥ W(D). It then follows that the largest optimal delegation set D∗ must also have
the form.

Because D̂ contains D, the bank’s optimized payoff must be at least as high,

WB

(
he
D̂

(λ);λ
)
≥ WB (heD(λ);λ) for all λ ∈ Λ. (30)

The regulator’s payoff equals WB plus the cost of any bailout payment. To establish that
the regulator’s payoff is also at least as high, we will show that the bailout associated with
he
D̂

(λ) is no larger than the bailout associated with heD(λ) for all λ.
Consider first any λ such that heD(λ) = h1. In these cases, the bank’s choice of h cannot

decrease when we move to policy D̂. Using the second part of Lemma 2, therefore, the
bailout payment cannot increase, that is

b
(
he
D̂

(λ), 2
)
≤ b (heD(λ), 2) for any λ such that heD(λ) = h1. (31)

4If no such choice exists for realization λ′, the bank is clearly not bailed out and the result is established.
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Next consider any λ such that heD(λ) > h1. In these states, the bank is not bailed out
under policy D. While the bank’s optimal choice of bail-in h may decrease when we move
to policy D̂, the bailout must remain zero. To see why, suppose this were not true, that is,
suppose the bank were bailed out following he

D̂
(λ). Because µ ≤ µ1, we know h as defined in

equation (17) is zero and no choice of bail-in will lead to a run. If the bank is being bailed
out, therefore, it must be choosing the smallest element of D̂, that is, he

D̂
(λ) = h1. But h1

was a feasible choice under policy D as well, which contradicts the fact that heD(λ) > h1 was
chosen.5 We thus have

b
(
he
D̂

(λ), 2
)

= b (heD(λ), 2) = 0 for any λ such that heD(λ) > h1. (32)

Combining equations (30) – (32) yields

WR

(
he
D̂

(λ);λ
)
≥ WR (heD(λ);λ) for all λ ∈ Λ. (33)

Using the definition of W in equation (19), we then have W(D̂) ≥ W(D), as desired.

Step (ii): Show h∗1 > 0.

Because the optimal delegation set has the form [hmin, 1], we can write the regulator’s
expected payoff as∫ h1

0

WR (h1;λ) dF (λ) +

∫ λeD

h1

WR (λ;λ) dF (λ) +

∫ λ̄

λeD

WR (h1;λ) dF (λ).

If the bank has a zero or small loss, it chooses the smallest allowable bail-in, h1. When the
loss is between h1 and the bailout cutoff λeD, the bank sets h = λ and is not bailed out. When
the loss is larger than λeD, the bank chooses the smallest allowable bail-in and is bailed out.
The bailout cutoff also depends on h1 and can be shown in this case to be

λeD (h1) = 1−
(
πu ((1− h1)c∗1) + (1− π)u (φ∗c∗2)

πu (c∗1) + (1− π)u (c∗2)

) 1
1−γ

. (34)

It is straightforward to show this cutoff is increasing in h1. When the minimum bail-in is
larger, being bailed out is less attractive to the bank and the set of states in which a bailout
occurs shrinks.

Because the distribution F may put positive probability on λ = 0, it is useful to rewrite
the regulator’s payoff using the density function f . Letting z ≥ 0 denote the probability of
λ = 0, we have

z WR (h1; 0) +

∫ h1

0

WR (h1;λ) f(λ)dλ+

∫ λeD

h1

WR (λ;λ) f(λ)dλ (35)

+

∫ λ̄

λeD

WR (h1;λ) f(λ)dλ.

5Recall that, if the bank were indifferent between h = h1 and h = heD(λ) > h1, it would have chosen the
larger bail-in under our tie-breaking rule.
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Investors never have an incentive to run when µ < µ1, meaning y(h) = 2 holds for all h. In
this case, the function WR(h;λ) is continuous in h and is differentiable for all λ except the
bailout cutoff λeD. We can, therefore, write the slope of the regulator’s expected payoff in
equation (35) with respect to h1 as

z
dWR

dh
(h1; 0) +

∫ h1

0

dWR

dh
(h1;λ) f(λ)dλ (36)

+
[
WR (λeD;λed)−WR (h1, λ

e
D)
]
f(λeD)

dλeD
dh1

+

∫ λ̄

λeD

dWR

dh
(h1;λ) f(λ)dλ.

The first two terms in this expression capture the cost of raising h1: it increases the distortion
in states where the bank has no loss or only a small loss. The last two terms capture the
benefit of increasing h1: it shrinks the set of states where the bank is bailed out and increases
the bail-in the bank must use in those states. To evaluate this slope at h1 = 0, we write out
the first term as

dWR

dh
(h1; 0) = πc∗1

(
−u′ ((1− h1)c∗1) +Ru′

(
R

1− π
(1− π(1− h1)c∗1)

))
.

Evaluating this term at h1 = 0 yields

dWR

dh
(0; 0) = πc∗1

(
−u′ (c∗1) +Ru′ (c∗2)

)
= 0. (37)

In other words, as h1 increases from zero, the cost of the distortion when the bank has no
loss is second-order because the bank was at an unconstrained optimum. The second term
in equation (36) also vanishes when h1 = 0. The third and fourth terms, in contrast, remain
strictly positive. It follows that the regulator’s objective function is strictly increasing at
h1 = 0 and, therefore, the optimal choice h∗1 is strictly positive.

Proposition 7. (Optimal policy in regions 2 and 3) If µ > µ1 then D∗ = [h0, h− ε]∪
[h1, 1] with 0 ≤ h∗0 ≤ h ≤ h∗1 < 1. Moreover, at least one of h∗0 > 0 and h∗1 > h holds with
strict inequality.

Proof. We follow a similar approach to that in the proof of Proposition 6. Given any dele-
gation set D, we first define another set D̂ that contains D and is the union of two intervals,
as in the statement of the proposition. We show that D̂ generates a payoff at least as high
as D and, therefore, the optimal delegation set must have this form. We then establish that
at least one of the inequalities in the proposition is strict.

Step 1: Define the new set D̂.

Given any D, let h1 denote its smallest element satisfying h1 ≥ h. In other words, h1 is the
smallest bail-in the bank can choose when it is in the bailout region without causing a run.
Because µ > µ1, we have h > 0 and, hence, h1 is strictly positive as well. Let h0 denote the
smallest overall element of D. Define

D̂ = [h0, h) ∪ [h1, 1] . (38)
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Note that D̂ contains the original delegation set D by construction. It consists of two disjoint
intervals. All h in the lower interval would cause a run if chosen when the bank is in the
bailout region, while all h in the upper interval would prevent a run. In states where the
bank is bailed out, it will choose the smallest element of one of these two intervals, that is,
either h0 or h1.

Step 2: Show W(D̂) ≥ W (D).

Consider first an intermediate delegation set,

D′ = D ∪ [h1, 1] .

That is, suppose we add to D only those bail-in choices that lie above h1. The argument
that moving from D to D′ cannot decrease the regulator’s payoff follows Step 1 in the proof
of Proposition 6 closely. Since D′ contains D, the bank’s optimized payoff must be as least
as high

WB (heD′(λ);λ) ≥ WB (heD(λ);λ) for all λ ∈ Λ. (39)

In all states λ > λeD, the bank is bailed out and sets heD(λ) to either h0 or h1. Since the
additions in moving to D′ are all larger than both h0 and h1, Lemma 2 shows that the bailout
received by the bank in these states cannot increase,

b
(
heD′(λ), y (heD′(λ))

)
≤ b
(
heD(λ), y (heD(λ))

)
for all λ < λeD. (40)

For λ ≤ λeD, the bank’s choice of h may either increase or decrease when we move to D′.
However, since the bank is not bailed out under policy D, it must also not be bailed out
under its optimal choice from D′. To see why, suppose it were bailed out under D′. Then
heD′(λ) must equal either h0 or h1. But both of these options were available under D as well,
contradicting the fact that the bank did not choose them and receive a bailout under policy
D. We therefore have

b
(
heD′(λ), y (heD′(λ))

)
= b
(
heD(λ), y (heD(λ))

)
= 0 for all λ ≤ λeD. (41)

Combining equations (39) – (41) with the definition of W in equation (19) shows that we
have W (D′) ≥ W(D), that is, moving to delegation set D′ weakly increases the regulator’s
payoff.

Next, we show that moving from D′ to D̂ in equation (38) also weakly increases the
regulator’s payoff. Note that D̂ contains D′ by construction, so we have the usual result that
the bank’s optimized payoff cannot decrease

WB

(
he
D̂

(λ);λ
)
≥ WB (heD′(λ);λ) for all λ ∈ Λ. (42)

All that remains is to show that the bailout payment to the bank does not increase for any
λ. Moving from D′ to D̂ adds choices of h that will cause a run if chosen when the bank is
in the bailout region. For λ > λeD′ , any h ∈ (h0, h) is strictly inferior to choosing h0. If the
bank is going to suffer a run, it would prefer to set the smallest bail-in possible. Since h0

was also available under D′ and was not chosen, it must not be optimal under D̂ either and
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the bank’s optimal choice remains unchanged,

he
D̂

(λ) = heD′(λ) for all λ > λeD′ . (43)

When λ ≤ λeD′ , the bank is not bailed out under D′. In this case, the bank must not be

bailed out following its optimal choice under D̂ either. To see why, suppose it were bailed
out under D̂. Then its optimal choice he

D̂
must be either h0 or h1. But both of these options

were available under policy D′, contradicting the fact that λ ≤ λeD′ . Therefore, we have

b
(
he
D̂

(λ), y
(
he
D̂

(λ)
))

= b
(
heD′(λ), y (heD′(λ))

)
= 0 for all λ ≥ λeD′ . (44)

Equations (42) - (44) imply we have

W(D̂) ≥ W (D′) ≥ W(D),

as desired. Together, steps (i) and (ii) show that the optimal delegation set must have the
form in equation (38). As discussed in the main text, we restrict the regulator to choose a
closed set to ensure the bank’s optimization problem has a solution in all states. If h1 > h,
the bank may want to choose the bail-in h closest to h in some states where it is not bailed
out, but no such closest number exists in D̂. To avoid this technical complication, we
approximate the form in equation (38) by

D∗ε = [h0, h− ε] ∪ [h, 1] ,

and state our results in terms of the limiting case where ε approaches zero.

Step 3: Show at least one of h∗0 > 0 and h∗1 > h holds with strict inequality.

We establish the final step by contradiction. Suppose both h∗0 = 0 and h∗1 = h held.
Then, taking the limiting case where ε→ 0, D∗ would be all of the unit interval, as studied
in Section 4. We will show that increasing one or both of these lower bounds would raise
welfare, contradicting the claim that D∗ = [0, 1] is optimal. We break the analysis into cases
based on the public sector’s marginal cost of funds.

Case (i): µ1 < µ < µ2

In this case, Proposition 4 establishes that he(λ) = h > 0 for all λ > λe when D = [0, 1].
In other words, in states where the bank is bailed out, it will choose the smallest bail-in that
prevents a run. Moreover, µ < µ2 implies this preference is strict, meaning the regulator
can increase h1 slightly above h and the bank will still prefer choosing h1 over setting h = 0
and experiencing a run in those states where it is bailed out. Within this neighborhood, and
keeping h∗0 fixed at zero, we can write the regulator’s expected payoff as a function of h1 ≥ h
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as ∫ h−ε

0

WR (λ;λ) dF (λ) +

∫ λ̂

h−ε
WR (h− ε;λ) dF (λ) +

∫ h1

λ̂

WR (h1;λ) dF (λ) (45)

+

∫ λeD

h1

WR (λ;λ) dF (λ) +

∫ λ̄

λeD

WR (h1;λ) dF (λ)

where λ̂ is the state where the bank is indifferent between h1 and h − ε, assuming it is not
bailed out in either case,

WB

(
h1; λ̂

)
= WB

(
h− ε; λ̂

)
, (46)

and λeD depends on h1 as shown in equation (34) above. The first four terms in equation
(45) correspond to states where the bank is not bailed out. When λ is less than h − ε, the
bank chooses the efficient bail-in h = λ. For λ between h − ε and h1, the efficient bail-in
lies in the “hole” of the delegation set and the bank must either bail-in less (h− ε) or more
(h1). Equation (46) defines the cutoff below which the bank prefers h− ε and above which
it prefers h1. Finally, when λ is larger than λeD, the bank chooses h1 and is bailed out.

Differentiating the objective function with respect to h1 yields∫ h1

λ̂

dWR

dh
(h1;λ) dF (λ) +

[
WR (λeD;λed)−WR (h1, λ

e
D)
]
f(λeD)

dλeD
dh1

(47)

+

∫ λ̄

λeD

dWR

dh
(h1;λ) dF (λ).

The first term in equation (47) captures the cost of distorting the bail-in in those states
where the bank is not bailed out, the efficient bail-in lies in the “hole” of the delegation set,
and the bank ends up choosing h1. This term is negative for all h1 > h. The second term
captures the change in the set of states where the bank is bailed out. The term in square
brackets is positive when h1 is close to h. Since λeD is increasing in h1, this second term is
strictly positive. The third term captures the effect of increasing the bail-in above h in states
where the bank is bailed out. This term is also strictly positive when h1 is close to h. Note
that no dλ̂/dh1 term appears in the derivative because the payoff function is continuous at
λ̂.

Evaluating this derivative at h1 = h and taking the limit as ε → 0, we have λ̂ → h
and the first term in equation (47) becomes zero. Since the other two terms remain strictly
positive, the derivative is strictly positive at h1 = h. If h∗0 = 0, therefore, the optimal value
of h∗1 must be strictly positive.

Case (ii): µ > µ2

In this case, Proposition 5 establishes he(λ) = 0 for all λ > λe when D = [0, 1]. In
other words, in states where the bank is bailed out, it chooses no bail-in and investors run
on the bank. Moreover, µ > µ2 implies this preference is strict, meaning the the regulator
can increase h0 slightly above 0 and the bank will still choose the lowest possible bail-in
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and experience a run in those states where it is bailed out. Within this neighborhood, and
keeping h∗1 fixed at h, we can write the regulator’s expected payoff as a function of h0 ≥ 0 as

z WR (h0; 0) +

∫ h0

0

WR (h0;λ) f(λ)dλ+

∫ λeD

h0

WR(λ;λ)f(λ)dλ

+

∫ λ̄

λeD

WR (h0;λ) f(λ)dλ

where f is the density function for λ > 0 and z ≥ 0 is the probability of λ = 0. Note
that this equation looks nearly identical to the objective in equation (35) in the proof of
Proposition 6 above, only with h0 replacing h1. The difference between the two equations
lies inside the WR term for λ > λeD, which now captures the fact that a run is occurring in
these states. Despite this difference, the steps are identical to those following equation (35)
and are omitted here. Following those steps shows that, when h1 = h, increasing h0 above
zero creates a first-order gain for the regulator in states where the bank is bailed out and
has no first-order cost in states where the bank is sound. As a result, h∗0 > 0 must hold.

Case (iii): µ = µ2

The final case is where the public sector’s marginal cost of funds lies exactly on the
boundary between the two previous cases. The analysis in Section 4.6 of the main text
shows that, in this case, the bank is indifferent between setting h = h > 0, which prevents
a run, and setting h = 0, which provokes a run. We assume the bank chooses h = h in this
situation, but increasing h∗1 even slightly above h would lead the bank to switch to h = 0
in states where it is bailed out. To increase the regulator’s payoff in this case, therefore, we
need to raise both h0 and h1 together in such a way that the bank continues to be willing to
choose the higher of the two values.

Give some h1 ≥ h, let g(h1) be the bail-in satisfying

πu ((1− h1)c∗1) + (1− π)u ((1− λ∗)c∗1) =

πu
(
(1− g(h1))c∗1

)
+ (1− π)

[
πu ((1− λ∗)c∗1) + (1− π)u ((1− λ∗)c∗2)

]
In other words, the bank is indifferent between setting h1 with no run and setting g(h1) with
a run. Using the form of the utility function in equation (1), we can solve this equation for

g (h1) = 1−
(

(1− h1)1−γ + (1− π)

(
u((1− λ∗)c∗2)

u((1− λ∗)c∗1)
− 1

)) 1
1−γ

. (48)

When µ = µ2, we have g(h) = 0. (This is effectively the definition of µ2 from the proof
of Proposition 4.) It is straightforward to show from equation (48) that g(h1) is strictly
increasing and differentiable as h1 increases above h. When h0 is set to g(h1), we can write
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the regulator’s payoff as a function of h1 as

z WR (g(h1); 0) +

∫ g(h1)

0

WR (g(h1);λ) f(λ)dλ+

∫ h−ε

g(h1)

WR (λ;λ) f(λ)dλ

+

∫ λ̂

h−ε
WR (h− ε;λ) f(λ)dλ+

∫ h1

λ̂

WR (h1;λ) f(λ)dλ+

∫ λeD

h1

WR (λ;λ) f(λ)dλ

+

∫ λ̄

λeD

WR (h1;λ) f(λ)dλ.

When the bank has zero loss or a small loss, it chooses the smallest allowable bail-in, g(h1).
For λ between g(h1) and h− ε, the bank is not bailed out and is able to choose the efficient
bail-in, λ. For λ between h− ε and h1 , the efficient bail-in lies in the hole of the delegation
set and the bank will choose either h−ε or h1. As in case (i) above, the cutoff state between
these two choices, λ̂, is given by equation (46). For λ between h1 and λeD, the bank is again
able to choose the efficient bail-in, λ. Finally, for λ greater than λeD, the bank chooses h1

and prevents a run, as in case (i) above.
Differentiating this objective function with respect to h1 yields

z
dWR

dh
(g(h1); 0) g′(h1) +

∫ g(h1)

0

dWR

dh
(g(h1);λ) g′(h1)f(λ)dλ

+

∫ h1

λ̂

dWR

dh
(h1;λ) f(λ)dλ+

[
WR (λeD;λed)−WR (h1, λ

e
D)
]
f(λeD)

dλeD
dh1

+

∫ λ̄

λeD

dWR

dh
(h1;λ) f(λ)dλ.

We evaluate this derivative at h1 = h and take the limit as ε→ 0, which implies λ̂→ h and,
hence, the third term in the derivative is zero. In addition, g(h) = 0 implies the second term
is zero and the derivative reduces to

z
dWR

dh
(0; 0)︸ ︷︷ ︸

=0

g′(h) +
[
WR (λeD;λeD)−WR (h, λeD)

]
︸ ︷︷ ︸

>0

f(λeD)
dλeD
dh1︸︷︷︸
>0

+

∫ λ̄

λeD

dWR

dh
(h1;λ)︸ ︷︷ ︸
>0

f(λ)dλ. > 0.

The first term measures the first-order cost of distorting the choice in states where the bank
has no loss, which is shown to be zero in equation (37) above. The second term captures the
benefit of shrinking the set of states where the bail is bailed out and is strictly positive. The
final term captures the benefit of increasing the bail-in in states where the bank is bailed
out, which is also positive. As a result, the derivative is strictly positive when evaluated at
h1 = h. The optimal policy must, therefore, have either h∗0 > 0, h∗1 > h, or both.
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