Allocating Losses: Bail-ins, Bailouts and Bank Regulation

Todd Keister Rutgers University Yuliyan Mitkov University of Bonn

February 2023

- Much recent discussion of "bailing in" bank creditors
 - that is, imposing losses on debt holders in a crisis
- Idea can be implemented in different ways
 - examples: withdrawal fees; contingent convertible bonds (CoCos);
 Orderly Liquidation Authority; Single Resolution Mechanism
- Focus is on tying bail-in to observable, bank-specific triggers
- However, banks will have some (relevant) private info
 - and some discretion over when to recognize losses, etc.
- Q: Should regulators wait for observable information to arrive? Or should they act sooner? If so, how?

- Growing body of work on bail-ins, contingent bank liabilities and bank resolution
 - Flannery (2009), Goodhart & Avgouleas (2014), Sommer (2014), Bolton & Oehmke (2019), Robatto (2017), Dewatripont and Tirole (2018), Walther and White (2019), Bernard et al. (2022), others
- Focus is typically on how a regulator should react to the information it receives
- Older literature on bail-ins begins with Wallace (1988; 1990)
 - "the best arrangement in a [model] with aggregate risk displays something resembling partial suspension" a "bail in"
 - or: bail-ins are necessary to implement efficient allocations
 - see also Green and Lin (2000, 2003), Peck and Shell (2003), Ennis and Keister (2009), Sultanum (2014) and others

- These papers emphasize that investors <u>want</u> bail-in contracts
 - an efficient way of dealing with adverse shocks
 - no need for regulation or supervisory bail-ins in these models
- Role for policy: encourage more state-contingent contracts
- Example: reform to money market mutual funds in the U.S.
 - prior to 2014: must redeem shares on demand at par or close
 - after: funds can impose withdrawal fees and suspend redemptions
 - b directed to do so if it is in the best interests of their shareholders
- Older literature suggests this type of reform will be effective
 - but ...

- ... but what if the bank anticipates being bailed out?
- We study an environment where:
 - banks have the *ability* to bail in their investors
 - government can provide bailouts and lacks commitment

We show:

- (i) Bailouts undermine the bank's incentive to bail in investors
 - result: equilibrium bail-ins are too small, bailouts are too large

(*ii*) ... but not entirely

- bank may choose to bail in investors to prevent a run
- desire to avoid a run partially offsets the distortion from bailouts

(iii) Regulators can use this fact to discipline bank behavior

- In our model, the regulator can mandate a bail-in at any time
 - but observes bank-specific information with a lag
 - does not know if bail-in is warranted, or the appropriate size
 - bank has private information during this period
- Regulator faces a *delegation problem*
 - bank has the relevant information (for determining efficient bail-in)
 - but bank's preferences are biased against bailing in
 - regulator gives the bank a choice set
 - b decides: how much flexibility to give bank in choosing the bail-in
- We derive the optimal delegation policy

- 1) The environment
- 2) A planner's problem
- 3) Bail-ins with no regulation
 - bailouts undermine the incentive to bail in
 - but not entirely
- 4) Optimal regulation
- 5) Conclusion

- t = 0,1,2
- Investors: $i \in [0,1]$
 - endowed with 1 at t = 0, nothing later
- Utility: $u(c_1 + \omega_i c_2)$ CRRA form
 - where $\omega_i = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$ means investor is $\begin{cases} \text{impatient} \\ \text{patient} \end{cases}$
- Type ω_i is revealed at t = 1, private information
 - π = prob. of being impatient for each investor

= fraction of impatient investors at t = 1

- Two interpretations:
 - single bank
 many locations; one bank per location

standard Diamond-Dybvig

- Investment technology yields return $\left\{ \begin{array}{c} 1 \\ R > 1 \end{array} \right\}$ at $\left\{ \begin{array}{c} t = 1 \\ t = 2 \end{array} \right\}$
- Endowments are pooled in a *bank*
 - bank is a coalition of investors \rightarrow no agency problem w/in bank
 - investors' claim is a hybrid of debt and equity
- Two broad states (t = 0)
 - normal: bank's assets continue to be worth 1 (per investor)
 - trouble: a fraction λ of bank's assets become worthless
 - ▶ λ is drawn from distribution *F* on $[0, \overline{\lambda}]$ (idiosyncratic)
- Bank decides how much to pay withdrawing investors ...
 - after bank and investors observe the realized λ

- Fiscal authority ("government"):
 - can bail out the bank if it has experienced a loss
 - μ = marginal utility cost of public funds
 - cost of public spending foregone when funds used for bailout
 - or cost of distortions associated with higher taxes
 - bailouts chosen as best response to situation at hand (no commitment) ⇒ will distort bank's incentives
- Regulator:
 - can limit banks' payouts to investors
 - observes value of bank-specific λ only after $\pi \ge 0$ withdrawals
 - captures the time needed to do detailed examinations

- Note: no decisions are made before λ is realized
 - > ex ante probabilities of the two broad states do not matter

1) The environment

- 2) A planner's problem
- 3) Bail-ins with no regulation
 - bailouts undermine the incentive to bail in
 - but not entirely
- 4) Optimal regulation
- 5) Conclusion

- In normal times, $\lambda = 0$
- Bank solves a standard Diamond-Dybvig allocation problem:

$$\max \pi u(c_1) + (1 - \pi)u(c_2)$$

s.t. $\pi c_1 + (1 - \pi)\frac{c_2}{R} \le 1$ solution: (c_1^*, c_2^*)
with $c_1^* < c_2^*$

- Interpretation:
 - (c_1^*, c_2^*) is the "face value" of bank's liabilities to its investors
 - measure bail-ins relative to this face value

- Now suppose a crisis occurs and λ is drawn from $F[0, \overline{\lambda}]$
- Q: How would a planner *allocate* these losses?

• Objective:
$$\pi u[c_1(\lambda)] + (1 - \pi)u[c_2(\lambda)] - \mu b(\lambda)$$

Feasibility: $\pi c_1(\lambda) + (1-\pi) \frac{c_2(\lambda)}{R} \le 1 - \lambda + b(\lambda)$

Planner will set:
$$c_1(\lambda) = (1 - h(\lambda))c_1^*$$

$$c_2(\lambda) = (1 - h(\lambda))c_2^*$$
for some $h(\lambda)$

• Then feasibility is: $h(\lambda) + b(\lambda) = \lambda$ $\uparrow \qquad \uparrow \qquad \uparrow$ bail-in + bailout = loss

- Solution is characterized by a cutoff λ*
- If $\lambda \leq \lambda^*$, bank is not bailed out
 - bail-in covers entire loss λ
- If $\lambda > \lambda^*$, bank is bailed out
 - and all investors are bailed in at rate λ^*
- Interpretation: public sector takes the "tail risk"
 - bails out in worst states, but only after a sufficient bail-in
- Q: How much tail risk should the public sector take?

• Cutoff λ^* depends on the govt's marginal cost of funds μ

- If μ is sufficiently large, there will be no bailouts
 - when fiscal situation is tight, public sector provides no insurance
- As μ decreases: public sector absorbs more of the tail risk

1) The environment

- 2) A planner's problem
- 3) Bail-ins with no regulation
 - bailouts undermine the incentive to bail in
 - but not entirely
- 4) Optimal regulation
- 5) Conclusion

Bail-in incentives

- Suppose bank is free to choose any initial bail-in h
 - what incentives does it face?
- Assume patient investors wait to withdraw (for now)
- If the bank is bailed out:
 - payment at t = 2 is determined by cost of public funds μ
 - independent of bank's loss and choice of initial bail-in h
 - that is, bail-in at t = 2 is fixed
- How should the bank set its initial bail-in at t = 1?

- If the bank has a very small loss (λ close to 0):
 - it will not be bailed out, regardless of how it sets bail-in h
- If the bank will not be bailed out:
 - incentives are the same as in the planner's problem
 - will choose same initial bail-in as the planner
 - $h = \lambda$
- Bank could "cheat", set h = 0
 - but this lowers consumption of its patient investors

Result: bail-in is efficient if bank has sufficiently small loss

- Suppose $\lambda = \lambda^*$ (largest value planner would not bail out)
- Q: Would the bank choose the planner's initial bail-in?
- If bank sets a smaller bail-in:
 - impatient investors get more
 - patient investors get the same
 - implies: bailout will be larger
- Optimal choice: h = 0
- If loss is larger (or slightly smaller), same logic applies

Result: Bailouts undermine the bank's incentive to bail in

Comparing the allocation of losses:

- In equilibrium:
 - bank is bailed out too often (i.e,. for more states λ)
 - bailouts are too large, initial bail-in is too small

- 1) The environment
- 2) A planner's problem
- 3) Bail-ins with no regulation
 - bailouts undermine the incentive to bail in
 - but not entirely
- 4) Optimal regulation
- 5) Conclusion

- ► So far: we have assumed $(1 \lambda^*)c_2^* \ge c_1^*$
 - satisfied if marginal cost of funds is sufficiently low ($\mu \le \mu_1$)
 - which makes bailouts relatively generous
- Now suppose µ is higher
 (govt has less fiscal capacity)
 - payment at t = 2 is lower ...
 - ... falls below c_1^*
- If bank sets h = 0, patient investors will run
 - which is lowers investors' welfare ...

… even though the bank is being bailed out

- Bank has two options in this case
 - it can set a bail-in (h > 0) that removes incentive to run
 - it can set h = 0 and allow the run to happen

We show:

- If $\mu_1 < \mu < \mu_2$: bank sets h > 0
 - desire to avoid a run partially offsets incentive distortion
- If $\mu > \mu_2$: bank sets h = 0
 - a run occurs, which causes too much liquidation of investment

Result: Threat of a run can partially restore bail-in incentive

- Bank has two options in this case
 - it can set a bail-in (h > 0) that removes incentive to run
 - it can set h = 0 and allow the run to happen

We show:

- If $\mu_1 < \mu < \mu_2$: bank sets h > 0
 - desire to avoid a run partially offsets incentive distortion
- If $\mu > \mu_2$: bank sets h = 0
 - a run occurs, which causes too much liquidation of investment

Result: Threat of a run can partially restore bail-in incentive

Compared to the planner's allocation:

- bailouts are too frequent
- bailouts are too large
- because the initial bail-in is too small
 - ... but it is not aways zero

1) The environment

- 2) Efficiently allocating losses
 - a planner's problem
- 3) Equilibrium
 - distorted incentives, inefficient outcomes
- 4) Regulation
- 5) Conclusion

What can a regulator do?

- Regulator can impose a particular bail-in h_R
- Interpretations:
 - writing down debt (including short-term)
 - imposing withdrawal fees
 restricting dividend payments
 - \blacktriangleright \Rightarrow anything than prevents resources from flowing out of the bank
- If the regulator observed λ , optimal policy is easy
 - require bank to follow planner's bail-in: $h_R(\lambda) = \min\{\lambda, \lambda^*\}$
- If there were no private information, again fairly easy
 - if both bank and regulator believe $\lambda \sim F$
 - require bank to follow *revised* planner's bail-in (when $\lambda \sim F$)

- Private information makes regulation more challenging
 - \blacktriangleright planner's desired bail-in depends on the realized λ
 - the regulator (initially) does not observe λ
 - the bank knows λ , but has distorted incentives
- A form of *delegation problem*
 - ▶ regulator chooses a delegation set $D \subseteq [0,1]$
 - then bank chooses its initial bail-in $h \in D$
- The set D could be a single point (no delegation)
 - or larger (an interval of choices, or more complex)
- Q: What is the optimal set D?

- If bailouts are sufficiently generous, no threat of a bank run
 - if bank is bailed out, it will choose smallest bail-in allowed

Result: Optimal policy is $D = [h_{min}, 1]$ for some $h_{min} > 0$

- a *mandatory minimum bail-in*
- Bank is biased against bail-in
 - optimal policy "caps" this bias
- Optimal h_{min} balances:
 - gain for high λ ; cost for low λ
- Notice the value of allowing bail-ins larger than h_{min}
 - > an example of *interval delegation*

When μ is larger

- We saw: a bank may be willing to live with a run
 - if there is a large benefit for the early withdrawers
- Required bail-in limits the benefit of "cheating"
- If chosen appropriately ...
 - ... bailed-out banks will set bail-in larger than the minimum
 - result: no runs occur
 - mandatory bail-in is a financial stability tool

- A mandatory minimum bail-in is costly if bank is sound
- In some cases, the following policy is better:
 - ▶ bank can either set h = 0 or set $h \ge h_{min}$
 - > an optional minimum bail-in
- Effective if setting h = 0 would lead to a run
 - but setting $h = h_{min}$ would not
- Benefit: smaller distortion when bank has little/no loss

- Regulator is using the possibility of a run to its advantage
 - spirit of Calomiris and Kahn (1991), Diamond and Rajan (2001), but applied to regulatory policy

We show:

- 1. When $\mu < \mu_1$, optimal policy sets $D^* = [h_{min}, 1]$
 - with $h_{min} > 0$; a mandatory minimum bail-in
- 2. When $\mu > \mu_1$, optimal policy takes one of two forms

(*i*) $D^* = [h_{min}, 1]$ (mandatory minimum bail-in)

- or depending on the distribution *F*
- $(ii) \ D^* = [h_0^*, h_1^*] \cup [h_2^*, 1]$
- generalized optional minimum bail-in
- design: bank chooses h in lower interval only when loss is small
 - "self-selects" into the appropriate interval
 - an example of non-interval delegation (a "hole" in D^*)

Two equivalent approaches:

- (*i*) Bail-ins are chosen at t = 1
 - regulator announces "trouble", gives bank a menu of options D*
 - bank chooses h from this menu
 - \blacktriangleright generates a mapping of types λ to chosen bail-in \tilde{h}

Two equivalent approaches:

(*ii*) Bail-in contracts are mandated at t = 0

- bank required to include bail-in function $\tilde{h}(\lambda)$ in contract
- when regulator announces "trouble", bank reports λ
 - function $\tilde{h}(\lambda)$ ensures incentive compatibility
- Both approaches lead to the same outcome

1) The environment

- 2) Efficiently allocating losses
 - a planner's problem
- 3) Equilibrium
 - distorted incentives, inefficient outcomes
- 4) Regulation
- 5) Conclusion

- Our model captures situations where:
 - regulators know there is a problem, but not how bad it is
 - bank and some investors/creditors have private information
 - bank anticipates being bailed out in some states
- In such situations:
 - bailouts undermine bail-ins, which misallocates resources ...
 - ... but not completely
- Optimal regulatory policy:
 - needs to consider the possibility of runs by investors ...
 - and use this possibility to discipline bank behavior
 - > in some cases, a form of *optional* minimum bail-in is best