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1 Introduction

Policy makers around the world are discussing the possibility of issuing central bank digital

currency (CBDC). Currently, the money used by households and firms is a combination

of currency issued by the central bank and liabilities of private financial institutions, most

notably bank deposits. While bank deposits can be transferred electronically using payment

cards, mobile apps, etc., currency must physically change hands in a transaction. The

shift toward electronic payments in recent decades has, therefore, represented a decline in

households’ and firms’ use of central bank money. Policy makers have expressed concern

that this decline could have negative consequences for financial inclusion, contestability in

payment services, and monetary policy. These concerns, along with developments in private

digital currencies, have spurred interest in CBDC. A variety of technological designs have

been proposed, ranging from cryptographic tokens to allowing individuals to open deposit

accounts at the central bank. Depending on the design, a CBDC may permit central bank

money to be used in a much wider range of situations, including online and large-value

transactions where using physical currency is impractical. It could also allow a widely-held

form of central bank money to bear interest. Academics and policy makers are discussing

the potential benefits and costs of issuing digital currency along a number of dimensions.1

One concern often raised in these discussions is that households and firms may shift sig-

nificant funds out of private bank deposits and into the new digital currency. A Bank for

International Settlements report (BIS, 2018) expresses concern that “a flow of retail deposits

into a CBDC could lead to a loss of low-cost and stable funding for banks.” Mersch (2017)

worries that “[a] consequence could be higher interest rates on bank loans.” Meaning et al.

(2018) wonder if the benefits of a CBDC would be “outweighed by the negative consequences

of the central bank disintermediating a large part of banks business models.”2 Others ar-

gue that making central bank money a more attractive competitor to bank deposits will

necessarily benefit consumers and the broader economy.3 Several central banks have run or

are planning pilot projects and at least one CBDC, the Bahamas’ Sand Dollar, is in full

operation. However, as these debates indicate, the macroeconomic implications of issuing a

digital currency are not well understood.

1 Early discussions were offered by Ali et al. (2014), Broadbent (2016), Fung and Halaburda (2016) and
Skingsley (2016), among others. Auer et al. (2020) provides a recent overview of the policy discussion.
Boar and Wehrli (2021) describe a survey of 65 central banks in which 86% reported currently studying
central bank digital currency in some form.

2 This concern is also expressed in official reports from the Bank of England (2020, pp.35-36), Bank of Israel
(2018, p.26), Dansmark Nationalbank (2017, pp.13-14), European Central Bank (2020, pp.16-17), Federal
Reserve (2022, p.17) Norges Bank (2018, pp.35-36) and Sverges Riksbank (2018, p.30).

3 See, for example, Bordo and Levin (2018) and Kumhof and Noone (2018).
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We study how introducing a CBDC affects interest rates, bank lending, output and

welfare in an environment where both central bank money and private bank deposits are

used in exchange. We build on the framework in Lagos and Wright (2005) and the subsequent

New Monetarist literature, where money in some form is essential for exchange.4 Bankers in

our model can issue deposits that serve as a means of payment. The ability of these deposits

to facilitate exchange may give rise to a liquidity premium, which lowers banks’ funding costs

and tends to increase investment. At the same time, however, bankers face credit constraints

due to limited pledgeability of their returns, which tends to reduce investment as in Kiyotaki

and Moore (1997, 2005), Holmström and Tirole (1998) and others.

We show that introducing a CBDC can often raise welfare in this environment, even if it

leads to some disintermedation of banks. A key benefit of digital currency is that it increases

production of those goods it can be used to purchase. In addition, the central bank gains a

new policy tool: the interest rate it pays on CBDC. This tool can be used to influence the

efficiency of exchange and, in some cases, of aggregate investment. The optimal choice of

this interest rate is sensitive to the design features of the CBDC, in particular, what existing

form(s) of payment it competes with. We study two broad possibilities, one in which the

central bank can issue targeted digital currencies, which compete only with a single existing

form of payment, and the other in which a digital currency is universal, meaning that it

competes with both physical currency and deposits.

The analysis of a targeted digital currency that competes only with physical currency is

straightforward. Because it involves substituting one form of outside money for another, a

cash-like CBDC has no direct impact on bank funding or investment. The ability to pay

interest on digital currency decouples the return on holding outside money from the rate

of inflation, which allows the central bank to increase the real value of the stock of outside

money, if desired. We show that a cash-like CBDC is desirable if and only if the social value

of cash-based transactions is sufficiently large. In these cases, the optimal policy corresponds

to a modified version of the Friedman rule.

Issuing a deposit-like CBDC, in contrast, will tend to crowd out bank deposits, raise the

real interest rate on these deposits, and decrease bank-financed investment. At the same

time, however, it will increase the aggregate stock of liquid assets in the economy, which

promotes more efficient levels of production and exchange. The optimal interest rate on a

deposit-like CBDC balances these competing effects. Such a currency tends to be desirable

when productive projects are sufficiently scarce relative to the transactions demand for bank

deposits and when credit market frictions are moderate.

4 For an overview of this literature, see the survey papers by Williamson and Wright (2010a, 2010b) and
Lagos et al. (2017), as well as the many references therein.
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Creating digital currencies that only compete with a single existing means of payment

may not be technologically feasible, however. For example, it may not be possible to design

a cash-like CBDC that cannot also be used in online or other transactions at a distance that

currently involve bank deposits. If a digital currency will necessarily compete with both cash

and bank deposits, the central bank must take into account the resulting interactions. To

illustrate these interactions, we study a universal CBDC that can be used in all transactions.

The central bank is more restricted in this regime: it sets a single interest rate on a digital

currency that is available for all uses. We show that, despite this restriction, a universal

CBDC can often raise welfare. We also show that, under the optimal policy, a universal

CBDC may circulate either more or less widely than two targeted CBDCs.

Finally, we investigate whether central bank lending to private banks can mitigate the

disintermediation effect of a deposit-like CBDC. With such lending, it is possible to choose

the interest rate so that digital currency is held in equilibrium but does not alter the real

allocation, in line with Brunnermeier and Niepelt (2019). However, the interest rate that

achieves this outcome is often not the optimal policy. Instead, welfare is often maximized

by using the CBDC interest rate to increase total real money balances and lower the equi-

librium liquidity premium, which results in disintermediation. This result emphasizes that

(i) realizing the benefits of a deposit-like CBDC in our framework necessarily creates some

disintermediation and (ii) the CBDC interest rate is a useful new policy tool.

Related Literature. The literature on CBDC is growing rapidly and already too large

to survey here.5 Our paper lies in the branch of this literature that uses dynamic general

equilibrium models to analyze the macroeconomic effects of a CBDC. The earliest paper in

this branch is Barrdear and Kumhof (2021), which introduces a CBDC into a quantitative

DSGE model to assess its impact on GDP and to evaluate different monetary policy rules.

The effects of issuing a digital currency in their framework come largely from the expansion

of the assets held by the central bank, which directly lowers the real interest rate, rather

than from having a new form of money per se. Our focus, in contrast, is on how introducing

a new payment medium affects the liquidity premium on bank deposits and thereby alters

equilibrium interest rates and investment.

In this respect, our paper is more closely related to recent work by Chiu et al. (2021) and

Williamson (2021b), both of which use New Monetarist models that share many features

5 Bech and Garratt (2017) provide a useful starting point by comparing different types of possible digital
currencies with existing payment options. Mancini-Griffoli et al. (2018) provide a comprehensive overview
of issues raised by a possible CBDC along with citations to many relevant papers. Among these, Kahn
et al. (2019) and Kumhof and Noone (2018) provide interesting discussions of the design choices facing a
central bank.
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with ours.6 Chiu et al. (2021) follow Andolfatto (2021) in studying the effects of introduc-

ing a CBDC when banks have market power. Williamson (2021b) focuses on the efficiency

gains that can arise when households hold direct claims on the central bank, in the form of

a CBDC, rather than claims on financial intermediaries that are subject to incentive con-

straints. A CBDC may disintermediate banks in both of these papers, but only in situations

where there is an overaccumulation of capital, which implies that disintermediation improves

economic efficiency. In our model, in contrast, financial frictions may cause investment to

be inefficiently low in equilibrium. A decline in bank deposits will tend to worsen this ineffi-

ciency, which captures policy makers’ concern that disintermediating banks could be costly

from a social point of view. These costs figure prominently in our optimal policy analysis

and in the comparison of alternative digital currency designs.

Piazzesi and Schneider (2020) demonstrate that disintermediating banks can be costly

in other ways as well. In their model, banks provide liquidity through both deposits and

credit lines, and these two activities are complementary. A digital currency that crowds out

deposits will also decrease the provision of credit lines, bringing additional losses. We view

our analysis as a benchmark that captures the fundamental interaction between CBDC and

bank deposits as competing means of payment. While future work will continue to identify

additional costs and benefits of introducing a CBDC, the fundamental tradeoffs we identify

here are likely to be present in any setting where disintermediating banks is a concern.

2 The model

In this section, we describe the physical environment, which builds on Lagos and Rocheteau

(2008) and Williamson (2012), among others. We also derive the conditions characterizing

equilibrium for a general formulation of the type(s) of currency available to agents. Subse-

quent sections then specialize the analysis to study different digital currency designs.

2.1 The environment

Time is discrete and continues forever. Each period is divided into two subperiods, the first

with a frictionless centralized market and the second with decentralized trade. A perishable

commodity is produced and consumed in each subperiod; we refer to these commodities as

the centralized market (CM) good and the decentralized market (DM) good, respectively.

6 See also Davoodalhosseini (2021), who studies the monetary policy implications of a CBDC that competes
with cash as a means of payment, and Dong and Xiao (2021), who study how the introduction of a CBDC
affects firms’ financing decisions.
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Agents. The economy is populated by three types of agents: buyers, sellers, and bankers.

Buyers and sellers are infinitely lived and participate in both markets in each period. They

can produce the CM good in the first subperiod using a linear technology that requires labor

as input, and they also have linear utility over CM consumption. In the second subperiod,

buyers want to consume but cannot produce, whereas sellers can produce but do not want

to consume. Each buyer is randomly matched with a seller with probability α ∈ [0, 1], so

trade is bilateral. A buyer has the period utility function

U b
(
xbt , qt

)
= xbt + u (qt) ,

where xbt ∈ R denotes net consumption of the CM good and qt ∈ R+ denotes consumption

of the DM good. The function u : R+ → R+ is strictly increasing, strictly concave, and

continuously differentiable, with u (0) = 0, u′ (0) = ∞, and u′ (∞) = 0. A seller has the

period utility function

U s (xst , qt) = xst − w (qt) ,

where xst ∈ R denotes net consumption of the CM good and qt ∈ R+ denotes production of

the DM good. The function w : R+ → R+ is strictly increasing, convex, and continuously

differentiable, with w (0) = 0. There is a unit mass each of buyers and sellers, all of whom

discount future periods at a common rate β ∈ (0, 1).

Bankers live for two periods, participate only in the centralized market, and consume

only in old age. Each period, a new generation of bankers is born. Banker j is endowed at

birth with an indivisible and nontradable project that requires one unit of the CM good as

input and pays off γj ∈ R+ units of the CM good in the following period.7 Project returns

are known in advance, publicly observable, and heterogeneous across bankers. There is a

measure η > 0 of bankers with each return in the support [0, γ̄]. We assume γ̄ > β−1, so

that some projects are socially efficient to operate but others are not.

Bankers have no endowment; they must fund their project by issuing deposits in the

centralized market when they are young. These deposits are risk-free claims on consumption

in the following period’s CM. The ability to issue deposits is limited by a pledgeability

constraint: only a fraction θ ≤ 1 of the project’s return can be pledged to the bank’s

depositors. This friction prevents some banks whose projects are profitable at market interest

rates from being able to borrow and invest. We assume θ > (βγ̄)−1, which ensures the most-

7 A banker in our model can be interpreted as the combination of a financial intermediary and a firm that
borrows from the intermediary to operate a productive technology. We refer to this combined entity as a
banker because we focus on how its liabilities serve as a means of payment and on how they are impacted
by the introduction of a digital currency. It is straightforward to divide these two roles into separate
institutions (a bank and a firm) in a way that leaves the results below unchanged.
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productive projects can be funded when the real interest rate on deposits is β−1. Bankers

maximize their old-age consumption, which we denote xt.

Assets and exchange. Buyers’ and sellers’ identities are unknown to each other and their

trading histories are private information, which precludes credit in the decentralized market

and makes a medium of exchange essential. The possible media of exchange in our model

are deposits issued by bankers and currency, both physical and digital. The supply of bank

deposits depends on the real interest rate, which determines how many bankers are able to

satisfy the pledgeability constraint. The supply of currency is determined by the central

bank, which targets a constant gross inflation rate µ > β.

The extent to which each of these assets can be used in DM exchange depends on the

verification technology available to the seller in a particular meeting. A fraction λ1 ∈ (0, 1)

of sellers is endowed with the technology to recognize physical currency but not deposits.

We interpret this assumption as capturing a variety of reasons why cash is used in practice,

including concerns about the privacy of the transacting parties, fees, and/or a lack of access

to the electronic payment network. The remaining fraction λ2 ≡ 1−λ1 of sellers is endowed

with the technology to recognize bank deposits but not physical currency. The meetings of

these sellers correspond to transactions in which the value of the trade and/or the distance

between parties make the use of physical currency impractical. We refer to a meeting in

which the seller is able to verify physical currency as type 1 and to a meeting in which the

seller can verify bank deposits as type 2. When we introduce digital currency, the design

features of the currency will determine which type(s) of seller can verify it. A buyer finds

out the type of seller she will potentially meet in the next DM before making her portfolio

decision in the CM.

Allocations and welfare. For discussions of optimal policy, we measure welfare using an

equal-weighted sum of all agents’ utilities. However, we follow Williamson (2012) in assuming

that only a fraction ν ∈ [0, 1] of type 1 meetings generates social value. Setting ν < 1 could

capture, for example, a policy maker putting less weight on transactions involving illicit

activities. Aggregate welfare is then

∞∑
t=0

βt
{
xbt + xst + xt + α [λ1 (νu (q1t)− w (q1t)) + λ2 (u (q2t)− w (q2t))]

}
. (1)

Feasibility of an allocation requires the net consumption of all agents in the centralized

market to be no greater than the net output of bankers’ investment projects. We focus on

allocations characterized by a cutoff value γ̂t above which a banker’s project is operated and
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below which it is not. Feasibility in period t then requires

xbt + xst + xt ≤ η

∫ γ̄

γ̂t−1

γdγ − η (γ̄ − γ̂t) . (2)

The right-hand side of this expression is the output from projects maturing at the current

date minus investment in projects that will mature next period. Net consumption of CM

goods by all agents can be no larger than this difference. As equations (1) and (2) make

clear, quasi-linear preferences imply that the distribution of CM consumption across agents

has no impact on welfare. In the analysis that follows, we summarize an allocation by the

sequences of DM consumption levels {q1t, q2t} and investment cutoff values {γ̂t}.
In the remainder of this section, we derive buyers’ demand for deposits and currency, the

supply of these assets, and the conditions that characterize an equilibrium of the model.

2.2 Asset demand

Let φt ∈ R+ denote the goods value of money in the centralized market in period t, so

the real value of Mt dollars is mt ≡ φtMt. Let i denote the net nominal interest rate paid

on a digital currency by the central bank, which can be either positive or negative. The

gross real rate of return on physical currency is then φt+1/φt and on digital currency is

(1 + i)φt+1/φt. Let 1 + rt denote the gross real interest rate on bank deposits. Finally, let

a ≡ (m, d, e) denote an asset portfolio consisting of m ∈ R+ units of physical real money

balances, d ∈ R+ units of bank deposits, and e ∈ R+ units of digital (or “electronic”) real

money balances, all measured in current CM consumption goods.

Bellman equations. Let Js (a, t) denote the value function for a buyer entering the cen-

tralized market in period t holding portfolio a. The index s ∈ {1, 2} indicates what type

of seller she will potentially meet in the next decentralized market. Let Vs (a′, t) denote the

value function of this same buyer when she arrives in the decentralized market with portfolio

a′. Using these two functions, we can write the Bellman equation for this buyer as

Js (a, t) = max
(xb,a′)∈R×R3

+

[
xb + Vs (a′, t)

]
,

where the maximization is subject to the budget constraint

xb + p · a′ = Rt−1 · a + τt.

The price vector p ≡ (1, 1, 1) measures the cost of acquiring real money balances and deposits
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in terms of CM goods, while the vector

Rt−1 ≡
(

φt
φt−1

, 1 + rt−1, (1 + i)
φt
φt−1

)
measures the gross real returns on assets carried over from the previous period. The final

term, τt, denotes the real value of any lump-sum transfer received by the agent.

The value function Vs (a′, t) satisfies

Vs (a′, t) = α [u (qs (a′, t)) + βJ (a′ − hs (a′, t) , t+ 1)] + (1− α) βJ (a′, t+ 1) ,

where qs (a′, t) ∈ R+ denotes the buyer’s consumption of the DM good and hs (a′, t) ∈ R3
+

denotes the payment she makes for this consumption out of her asset holdings a′. The

function J (a, t) in this expression is the expected value of entering the centralized market

before knowing the type of her potential decentralized meeting in the following period,

J (a, t) ≡ λ1J1 (a, t) + λ2J2 (a, t) .

Bargaining. Throughout the analysis, we assume that buyers make a take-it-or-leave-it

offer to sellers, solving

max
(qs,hs)∈R4

+

[u (qs)− β ×Rt · hs]

subject to the seller’s participation constraint

−w (qs) + β ×Rt · hs ≥ 0

and the liquidity constraint

hs ≤ fs (a) . (3)

The function fs requires the buyer to pay with assets her trading partner can verify. If, for

example, type 1 sellers can only verify physical currency, we have f1 (a) = (m, 0, 0). If these

sellers can instead verify both physical and digital currency, we have f1 (a) = (m, 0, e). In the

sections that follow, we impose particular functions fs to capture different potential digital

currency designs. For now, we only impose that type 1 sellers can verify physical currency

but not bank deposits and that the reverse holds for type 2 sellers.

The solution to this problem implies the following schedule for DM output

qs (a, t) =

{
w−1 (βRt · fs (a)) if Rt · fs (a) < w(q∗)

β

q∗ otherwise
(4)
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and for payments

Rt · hs (a, t) =

{
Rt · fs (a) if Rt · fs (a) < w(q∗)

β
w(q∗)
β

otherwise,

where q∗ satisfies u′ (q∗) = w′ (q∗). If the value of the buyer’s spendable assets is large enough

to induce the seller to produce q∗, the efficient level of trade occurs. If not, the buyer spends

all she can and the seller produces an amount smaller than q∗.

Portfolio choice. Using these schedules, a buyer’s portfolio problem in the centralized

market can be written as

max
a′∈R3

+

{−p · a′ + α [u (qs (a′, t))− βRt · hs (a′, t)] + βRt · a′} .

Recall that the buyer knows the type of seller she will potentially meet in the next DM when

making this choice. The slope of the objective function with respect to a given asset depends

not only on whether the seller accepts the asset but also on whether the buyer is liquidity

constrained. Define the function L : R+ → R+ by

L (A) =

{
α
u′(w−1(βA))
w′(w−1(βA))

+ 1− α if A ≤ w (q∗) /β

1 otherwise.

This function measures the expected benefit of holding an extra unit of spendable assets.

If the buyer’s current spendable assets are insufficient to purchase the efficient quantity q∗,

the increase will allow her to consume more if she is matched in the DM, which occurs

with probability α. If she is not matched, or if she already has enough spendable assets to

purchase q∗, she merely holds the extra unit of assets until the following CM.

Using this function, the first-order condition for the real physical currency balances of a

buyer who will potentially be in a type 1 match can be written as

L (Rt · f1 (a′)) ≤ φt
βφt+1

, (5)

with equality if m′ > 0. The first-order condition for the deposits of a buyer who will

potentially be in a type 2 match is

L (Rt · f2 (a′)) ≤ 1

β (1 + rt)
, (6)

with equality if d′ > 0. In addition, only buyers potentially entering type 1 meetings will
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hold physical currency and only buyers potentially entering type 2 meetings will hold bank

deposits.8 If type s sellers accept digital currency, the first-order condition for real digital

currency balances of a buyer who will potentially be in a type s match is

L (Rt · fs (a′)) ≤ φt
β (1 + i)φt+1

, (7)

with equality if e′ > 0. Equations (5) – (7) thus characterize the demand for each asset in

the period-t centralized market.

2.3 Asset supply

Deposits. To derive the supply of deposits, consider a banker born in period t with a

project that returns γj ∈ [0, γ̄]. Given a market interest rate rt, this banker is willing to

issue a deposit and invest if

γj − (1 + rt) ≥ 0.

However, the promised repayment on this deposit cannot exceed the value of the banker’s

pledgeable future income

1 + rt ≤ θγj. (8)

Note that if θ < 1 holds, this constraint is strictly tighter than the previous one, meaning

that some bankers with projects that are profitable at the market interest rate will not be

able to raise funds and invest.

Let γ̂t ∈ R+ denote the banker whose project’s payoff satisfies the pledgeability restriction

with equality in period t, that is,

γ̂t =
1 + rt
θ

. (9)

The aggregate supply of deposits then equals the measure of bankers with project returns of

at least γ̂, which equals η (γ̄ − γ̂), or

η

(
γ̄ − 1 + rt

θ

)
.

Note that, for any θ, a reduction in the interest rate leads to an increase in investment by

allowing a larger number of bankers to issue deposits. In other words, a lower interest rate

will lead to an expansion of the banking system and an increased supply of deposits.

8 These decisions reflect agents’ strict preferences when the real return on an asset is less than β−1. All
buyers and sellers are indifferent about holding an asset whose real return equals β−1. In this case, we
simplify our notation by assuming, without any loss of generality, that only buyers potentially entering a
meeting where an asset is accepted will hold that asset.
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Currency. The supply of both physical and digital currency is set by the central bank

following a price-level target rule with

φt
φt+1

= µ > β for all t.

The central bank stands ready to exchange units of both physical and digital currency for

CM goods at the desired price level each period.9 In addition to pinning down the price level,

this policy ensures that digital and physical currency always have the same value.10 Letting

M̄t ∈ R+ denote the supply of physical currency and Ēt the supply of digital currency, the

central bank’s budget constraint is

φt
(
M̄t + Ēt

)
= φt

(
M̄t−1 + (1 + i) Ēt−1

)
+ τt,

where the lump-sum tax/transfer τt is set to balance the budget each period.11

2.4 Market clearing

Because physical currency is only used in type 1 meetings, we can write its market clearing

equation as

λ1mt = φtM̄t. (10)

Similarly, the fact that bank deposits are only exchanged in type 2 meetings allows us to

write the market-clearing equation for the deposit market as

λ2dt = η

(
γ̄ − 1 + rt

θ

)
. (11)

Market clearing for digital currency requires

λ1e1,t + λ2e2,t = φtĒt, (12)

9 We could instead take the more standard approach of assuming that the total money supply grows at
a constant rate µ. With both physical and digital currency, however, the relative supply of each type
of currency is endogenous and the notation becomes more complex. Given that we focus on stationary
allocations where money is valued, the simpler approach we take here is without any loss of generality.

10 Private digital currencies like Bitcoin would be different in this regard, of course. See Bank for International
Settlements (2015) for a discussion of the economic implications of private digital currencies and Fernández-
Villaverde and Sanches (2019) for a model of private digital currency issue.

11 In other words, while we refer to the policy maker in the model as the “central bank,” it actually represents
the consolidated public sector, as is common in dynamic general equilibrium models.
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recognizing that es,t will be zero whenever type s sellers do not accept digital currency.

An equilibrium of the model consists of sequences of interest rates {rt}, portfolio holdings

{a1t, a2t}, and an allocation {q1t, q2t, γ̂t} satisfying equations (4)-(7) and (9)-(12).

In the next section, we derive the properties of equilibrium in a benchmark model with

no digital currency. We then introduce different types of digital currency in Sections 4 and

5, analyzing the resulting equilibrium allocations and welfare.

3 Equilibrium with no digital currency

When there is no digital currency, the functions fs in the buyer’s liquidity constraint in

equation (3) are given by

f1 (a) = (m, 0, 0) and f2 (a) = (0, d, 0) .

A buyer can only use her physical currency balances in a type 1 meeting and her bank

deposits in a type 2 meeting. The Inada condition on buyers’ utility function then implies

that the first-order conditions (5) and (6) for buyers’ portfolio choices will hold with equality.

Combining these equations with the market-clearing conditions (10) and (11) yields

L

(
mt

µ

)
=
µ

β
(13)

and

L

(
(1 + rt)

η

λ2

(
γ̄ − 1 + rt

θ

))
=

1

β (1 + rt)
. (14)

The fact that only period-t variables appear in each of these two equations shows that

an equilibrium is necessarily stationary. To guarantee the existence and uniqueness of equi-

librium, we assume preferences are such that:

(i) AL (A) is strictly increasing and (ii) lim
(1+r)→0

L−1
(

1
β(1+r)

)
1 + r

< ηγ̄.

The first assumption ensures the demand for deposits is strictly increasing in the interest

rate, while the second guarantees the supply of deposits is large enough to meet demand

at some interest rate.12 The following proposition establishes the existence and uniqueness

of equilibrium in the benchmark economy. Proofs of all propositions are contained in the

supplemental appendix.

12 If u is of the CRRA form and w is linear, for example, these assumptions are satisfied whenever the
coefficient of relative risk aversion is less than one.
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Proposition 1. The economy with no digital currency has a unique equilibrium. There is

a liquidity premium on deposits in this equilibrium if and only if η < λ2w(q∗)

γ̄− 1
βθ

. When this

condition holds, the equilibrium interest rate is a strictly increasing function of η.

When bankers’ income is fully pledgeable (θ = 1), the results for our benchmark model

follow those in Lagos and Rocheteau (2008) closely. When η is sufficiently large, productive

projects are plentiful and there is no liquidity premium on deposits, that is, 1+rN = β−1. In

this case, an investment project is funded if and only if it returns at least β−1, and production

in type 2 DM meetings equals the surplus-maximizing quantity q∗. When η is smaller,

productive projects are scarce and a liquidity premium emerges on deposits: 1 + rN < β−1.

This liquidity premium leads to overinvestment in the sense that some projects with a return

lower than β−1 are funded, which decreases the total welfare derived from CM consumption.

In addition, the quantity produced in type 2 DM meetings falls below q∗. An increase in

η in this region leads to a larger supply of deposits at any interest rate, which decreases

the equilibrium liquidity premium and moves the quantities of CM investment and of DM

production in type 2 meetings toward their efficient levels.13

In the presence of credit market frictions (θ < 1), the relationship between the liquidity

premium on deposits and the efficiency of equilibrium investment changes, and our approach

offers new insights. It remains true that when η is sufficiently large, there is no liquidity

premium on deposits and production in type 2 DM meetings is at the efficient level. However,

some bankers with socially productive projects no longer have enough pledgeable income to

credibly repay their deposits. As a result, the equilibrium investment cutoff is higher than

β−1 and the quantity of CM investment is inefficiently low. When η is smaller and high-

return projects are scarce, a liquidity premium again emerges on deposits as 1+rN falls below

β−1. This lower interest rate now increases investment toward the efficient level. In other

words, when θ < 1, a liquidity premium on deposits can partially offset the effects of the

credit market friction and thereby increase the total welfare derived from CM consumption.

At the same time, however, the quantity of the DM good produced in type 2 meetings falls

below the surplus-maximizing quantity q∗.

The result that CM investment can be inefficiently low depends on a combination of two

assumptions: bankers face the pledgeability constraint (8) and have limited funds of their

own. In Williamson (2021b), bankers face a similar credit constraint but can work without

limit when young and invest the proceeds in their bank. Investment will never be inefficiently

low in that case, since any project that returns at least β−1 would be operated with internal

13 For studies of how liquidity premia affect the level of investment and macroeconomic outcomes in related
environments, see Williamson (2012), Hu and Rocheteau (2013), Rocheteau and Rodriguez-Lopez (2014),
Andolfatto et al. (2016), Hu (2021) and Cui et al. (2021), among others.
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Figure 1: Equilibrium interest rate on deposits

funds if the banker cannot borrow more cheaply. Our assumption that bankers have zero

income when young simplifies the notation, but similar results would be obtained as long

as this income is sufficiently limited. When we introduce a digital currency, the fact that

investment may be inefficiently low creates the possibility that crowding out bank deposits

is socially costly.

Figure 1 depicts the equilibrium interest rate on deposits as a function of the pledgeability

parameter for two different values of η.14 Panel (a) corresponds to the case where η is small

enough that there is a liquidity premium when θ = 1, while panel (b) lies in the opposite case.

The equilibrium interest rate is an increasing, concave function of θ in both cases, strictly

so whenever 1 + rN < β−1. The dashed line in each panel corresponds to 1 + r = θ/β,

the interest rate at which the liquidity premium on deposits exactly offsets the effect of the

pledgeability constraint, placing the equilibrium investment cutoff γ̂ at the efficient value

β−1. When the liquidity premium is large enough that 1 + rN lies below the dashed line, the

investment cutoff is below β−1 and the equilibrium is characterized by overinvestment. As

the figure shows, overinvestment will occur whenever both (i) η is small enough that there is

a liquidity premium when θ = 1 and (ii) θ is sufficiently close to 1. When 1 + rN lies above

the dashed line, in contrast, the level of CM investment is inefficiently low. The figure shows

that underinvestment always occurs in our model when η is sufficiently large (as in panel b)

and θ < 1, as well as when η is smaller (as in panel a) and θ is sufficiently small.

It bears emphasizing that, while a liquidity premium may improve the efficiency of equi-

librium investment in our model, it still reduces the quantity of the DM good produced in

type 2 meetings below the surplus-maximizing value q∗. This tradeoff between the efficiency

14 The figure uses u(c) = 2
√
c, w(q) = q, α = 1, β = 0.96, λ1 = λ2 = 0.5, γ̄ = 2 and ν = 1.
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of DM exchange and the quantity of CM investment will be central to understanding the

macroeconomic effects of introducing a digital currency in the sections that follow.

4 Targeted digital currencies

In this section, we assume it is possible for the central bank to design digital currencies that

can only be used in place of a single exisiting means of payment. We begin by studying a

cash-like CBDC, which can be verified by type 1 sellers but not by type 2 sellers. We then

turn to a deposit-like CBDC, which has the opposite features. In each case, we ask whether

the digital currency is desirable in the sense that it increases welfare when the interest rate

is chosen optimally.15 We then study the relationship between the two optimal interest rates

in a dual-CBDC system, where both targeted currencies are issued.

4.1 A cash-like digital currency

A cash-like CBDC is one that can easily substitute for physical currency in transactions,

but not for bank deposits. The design may preserve users’ privacy, for example, and allow

transfer of funds without network connectivity. It may also minimize the fees and other costs

associated with its use, particularly for small transactions. At the same time, the design

may impose caps on balances and on transaction size that make the currency impractical to

use in large-value transactions. Balances may also be stored on a smart card or other device

that must be physically present to transfer funds. In the context of our model, we capture

this type of design by assuming that a cash-like CBDC can be verified by, and only by, type

1 sellers.

Equilibrium. With a cash-like CBDC, the functions fs in the buyer’s liquidity constraint

in equation (3) become

f1 (a) = (m, 0, e) and f2 (a) = (0, d, 0) .

Buyers in a type 1 meeting can use their balances of physical and/or digital currency to

make purchases, while buyers in a type 2 meeting can only use bank deposits. Comparing

the first-order conditions for physical and digital currency in equations (5) and (7) shows

that a buyer entering a type 1 meeting will only hold whichever currency offers the higher

return. If the digital currency were to pay a negative interest rate, demand would be zero.

15 See Agur et al. (2022) for a model in which a single CBDC is an imperfect substitute for both cash and
deposits. Wang (2021) studies how the desirability of different designs is affected by concerns about tax
avoidance.
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If i = 0, type 1 buyers are indifferent between the two currencies and the equilibrium

paths of {mt} and {e1t} are indeterminate, but total real money balances and all other

equilibrium quantities are unchanged. Therefore, introducing a cash-like CBDC will only

affect equilibrium consumption and welfare if it carries a positive interest rate.16

When i > 0, the first-order condition in equation (7) will hold with equality and the

equilibrium quantity of real currency balances e1t will satisfy

L

(
(1 + i)

µ
e1t

)
=

µ

(1 + i) β
.

Comparing this expression with equation (13) shows that i > 0 implies buyers entering a type

1 meeting will hold larger real currency balances when the digital currency is introduced.

Equation (4) then shows that the quantity of DM production in type 1 meeting also increases.

Combining the different cases, we can express this quantity as

qC1 (1 + i) ≡ w−1

(
βL−1

(
µ

βmax {1 + i, 1}

))
. (15)

The equilibrium quantities of deposits, CM investment, and DM production in type 2 meet-

ings are unchanged. The following proposition summarizes these results, using a superscript

C to denote equilibrium values with a cash-like CBDC.

Proposition 2. Under a cash-like digital currency with i > 0, the unique equilibrium allo-

cation satisfies eC1 > mN , qC1 > qN1 and
(
qC2 , γ̂

C
)

=
(
qN2 , γ̂

N
)
.

Optimal policy. The potential benefit of introducing a cash-like CBDC in our framework

is that it allows the policy maker to increase the rate of return on currency while maintaining

the same target for the price level and inflation. We think of this target as being determined

by considerations outside the scope of our model, such as stabilization policy and the zero

lower bound. (See Andrade et al. (2019) for a recent discussion.) If the policy maker could

freely choose µ in our model, introducing a cash-like CBDC would have no effect, in line

with the results in Williamson (2021b). However, the ability to use digital currency in

type 1 meetings would still have implications for the desirability of a universal CBDC in

Section 5 below. The policy maker’s desired rate of return on currency depends critically on

the parameter ν, which measures the fraction of type 1 DM meetings that result in socially-

valuable consumption. The following proposition shows that a cash-like CBDC raises welfare

under the optimal policy if any only if ν is sufficiently high.

16 In practice, a cash-like CBDC may attract users without paying interest if it is more convenient, safer to
use, or offers a loss-recovery mechanism. We interpret the interest rate i in our model as capturing these
non-pecuniary benefits as well as explicit interest payments.
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Proposition 3. There exists ν̄ ∈ (0, 1) such that a cash-like digital currency is desirable if

and only if ν > ν̄. In this case, the optimal policy is given by

1 + iC ≡ µ

β

ν

α + (1− α) ν
. (16)

When ν is large, the policy maker wants cash buyers to have access to a better means of

payment, which we interpret as a desire to promote financial inclusion. When ν is small,

in contrast, concerns about facilitating illicit activities make a cash-like CBDC undesirable.

The interest rate in equation (16) can be thought of as a modified version of the Friedman

rule that optimally balances these two concerns. If a cash-like CBDC is not desirable, we

normalize the optimal policy to iC = 0.

4.2 A deposit-like digital currency

We next consider a deposit-like CBDC, which can be verified only by type 2 sellers. This

assumption represents a design that shares the features and limitations of bank deposits as

a medium of exchange. For example, individuals might hold accounts with the central bank,

either directly or through an intermediary, and make payments using a debit card. However

the balances are held, a design in which payments are processed over an existing bank-based

network and have a similar fee structure would tend to be deposit-like.

Equilibrium. With a deposit-like CBDC, the functions fs in the buyer’s liquidity constraint

in equation (3) become

f1 (a) = (m, 0, 0) and f2 (a) = (0, d, e) .

Buyers in a type 1 meeting can only use their physical currency balances to make purchases,

while buyers in a type 2 meeting can use their bank deposits and/or digital currency balances.

Comparing the first-order conditions for bank deposits and digital currency in equations (6)

and (7) shows that a type 2 buyer would only choose to hold whichever asset offers the higher

return. If the nominal interest rate on the digital currency, 1+ i, is set below the equilibrium

nominal interest rate on deposits in the benchmark model, µ
(
1 + rN

)
, the demand for the

digital currency will be zero and it will have no effect on the equilibrium allocation. If

these two interest rates are equal, type 2 buyers would be indifferent between deposits and

digital currency. However, the first-order condition for deposits (6) together with the market-

clearing condition (11) would imply that equilibrium digital currency holdings must again be

zero. A deposit-like CBDC will only be held in equilibrium if the interest rate is set higher
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than the nominal interest rate on deposits in the benchmark model, that is,

1 + i > µ
(
1 + rN

)
. (17)

Note that this condition can be satisfied only if there is a liquidity premium on deposits in

the benchmark model, that is, if 1 + rN < β−1. In other words, the assets that back bank

deposits must be in scarce supply for a deposit-like CBDC to play a role in our model.

Unlike in the previous section, a digital currency will not completely replace deposits as

a medium of exchange when condition (17) holds. As some type 2 buyers switch to holding

digital currency, the decline in deposit demand will cause the interest rate on deposits to

rise until, in equilibrium, it equals the CBDC interest rate,

1 + i = µ
(
1 + rD

)
. (18)

where the superscript D denotes equilibrium values under a deposit-like regime. Because

individual type 2 buyers are indifferent between the two assets in equilibrium, the first-order

conditions (6) and (7) will both hold with equality and a type 2 buyer’s total holding of

spendable assets will satisfy

L

((
1 + rD

) [ η
λ2

(
γ̄ − 1 + rD

θ

)
+ eD2

])
=

1

β (1 + rD)
. (19)

The higher interest rate on deposits implies through equations (9) and (11) that the level

of CM investment and the quantity of deposits issued by banks both decrease. In other

words, a deposit-like CBDC disintermediates banks to some degree and crowds out bank-

financed investment. At the same time, however, equation (19) shows that the higher rate

of return leads type 2 buyers to hold larger total spendable assets, e2 + d. These larger asset

holdings translate, through equation (6), into larger production of the type 2 good in DM

meetings. Finally, because the digital currency cannot be used in type 1 DM meetings, the

demand for physical currency and the quantity produced in type 1 meetings are unchanged

from the benchmark case. The following proposition summarizes these results.

Proposition 4. With a deposit-like digital currency satisfying condition (17), the unique

equilibrium allocation satisfies eD2 + dD > dN > dD,
(
rD, γ̂D, qD2

)
�
(
rN , γ̂N , qN2

)
, and

qD1 = qN1 .

Optimal policy. The results in Proposition 4 point to a tradeoff the central bank faces

when setting the interest rate on a deposit-like CBDC. Raising this interest rate increases

DM output in type 2 meetings and promotes efficient exchange, but decreases CM invest-

ment. The optimal policy balances these competing concerns. Using the stationarity of the
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equilibrium allocation and omitting the terms that are unaffected by a deposit-like CBDC,

we can write the objective in equation (1) as

WD (1 + i) ≡ η

∫ γ̄

1+i
µθ

(βγ − 1) dγ + αλ2

[
u
(
qD2 (1 + i)

)
− w

(
qD2 (1 + i)

)]
(20)

where

qD2 (1 + i) ≡ w−1

(
βL−1

(
µ

βmax {1 + i, µ (1 + rD)}

))
. (21)

Without loss of generality, we can eliminate the max term by restricting the policy maker’s

choice set to 1 + i ∈
[
µ
(
1 + rN

)
, µ/β

]
. Using the definition of the cutoff productivity γ̂ in

equation (9), the slope of the objective function with respect to the policy choice can then

be written as

dWD

d (1 + i)
= −

(
η

µθ

)
(βγ̂ − 1) + αλ2

[
u′
(
qD2
)
− w′

(
qD2
)] dqD2
d (1 + i)

(22)

The first term in this expression measures the cost of a higher interest rate, which comes

from disintermediating banks. A marginal increase in the CBDC interest rate raises the

equilibrium interest rate on deposits by µ−1, as shown in equation (18). A marginal increase

in the deposit rate, in turn, increases the productivity threshold for obtaining funding, γ̂,

by θ−1, as shown in equation (9). Given that there is a measure η of bankers with each

productivity level, the total measure of projects that lose funding due to a marginal increase

in 1 + i is thus η/(µθ). This quantity is multiplied by the social value of the marginal

project, which produces γ̂ units of CM output in the next period using one unit of CM input

this period. The second term in equation (22) measures benefit of a higher interest rate

from increased production and exchange of the DM good in type 2 meetings. The higher

real return on deposits and digital currency leads buyers to hold larger real balances of

spendable assets, which increases the quantity qD2 produced and thereby increases the gains

from trade when a buyer and a type 2 seller meet.

The following proposition shows that a deposit-like CBDC is desirable if productive

projects are sufficiently scarce. It also shows that, in these cases, the solution to the optimal

policy problem is interior when credit market frictions are present and is thus characterized

by equality of the marginal cost and marginal benefit in equation (22). In the absence of

credit market frictions, the optimal policy corresponds to the Friedman rule.

Proposition 5. There exists η̄ > 0 such that η < η̄ implies a deposit-like digital currency is

desirable. The optimal policy satisfies 1 + i ∈
[
µ
(
1 + rN

)
, µ/β

)
if θ < 1 and 1 + i = µ/β if

θ = 1.
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Figure 2: Optimal policy with a deposit-like CBDC

One case where it is easy to see that a deposit-like CBDC can raise welfare is when the

equilibrium without a digital currency exhibits overinvestment. If 1 + rN < θ/β holds, the

marginal project being funded in the economy without digital currency returns less than β−1.

Introducing a CBDC that bears a slightly higher real return will crowd out these inefficient

projects while at the same time increasing the quantity produced in type 2 DM meetings

toward the efficient level. We record this result in the following corollary.

Corollary 1. If 1 + rN < θ
β

, a deposit-like digital currency is desirable.

Figure 2 depicts the optimal interest rate on a deposit-like CBDC and the associated

welfare gain, using the same parameter values as panel (a) of Figure 1. Panel (a) in Figure 2

shows how, for this example, the optimal real interest rate on a deposit-like digital currency

is strictly higher than the interest rate on deposits in the baseline economy for all values of θ.

Moreover, the optimal interest rate converges to µ/β as θ approaches 1. Panel (b) shows that

the welfare gain from introducing a digital currency is largest for intermediate values of the

credit friction θ. Two competing forces are at work. On one hand, as θ increases, the costs

associated with crowding out CM investment become smaller. In particular, the measure of

projects that are crowded out by a marginal increase in the deposit rate and the productivity

of the marginal project are both proportional to θ−1. On the other hand, an increase in θ

decreases the liquidity premium in the basline economy, which lowers the benefit of a digital

currency in promoting DM production and exchange. In the example depicted here, the first

effect dominates for lower values of θ, while the second effect dominates for higher values.

As a result, the welfare gain of introducing a CBDC is largest for intermediate values of θ.
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4.3 Discussion

Costly disintermediation. Whenever there is a liquidity premium on deposits, introducing

a deposit-like CBDC can improve the efficiency of DM production and exchange by inducing

type 2 buyers to hold larger total real money balances. If there were no interaction with CM

investment, such a digital currency would always be desirable. The tradeoff in our model

comes from the combination of CBDC crowding out bank deposits and inefficiently-low

investment due to the pledgeability constraint. This tradeoff distinguishes our approach from

that in Williamson (2021b), where a liquidity premium necessarily leads to overinvestment.

Disintermediation in his model always raises welfare by moving the capital stock closer to

the golden rule.17 Our model, in contrast, speaks directly to policy makers’ concerns about

disintermedation being socially costly and provides conditions under which a deposit-like

CBDC is desirable despite these costs.

Market power. When banks have market power in the deposit market, the benefits of in-

troducing a deposit-like CBDC may be larger than in our competitive framework. Andolfatto

(2021) constructs a model with overlapping generations of households in which imperfectly-

competitive banks hold a portfolio of reserves and loans to firms. The introduction of a

CBDC in his setting raises the interest rate on bank deposits in much the same way as in

our model. However, this change has no effect on the loan rate or on bank lending in his

model; instead, it simply decreases bank profits. Chiu et al. (2021) introduce Cournot com-

petition for deposits into a modified version of the model we study here. They show that

two distinct regimes arise. If the CBDC is only moderately attractive to households, there

may be little or no use of it in equilibrium. Nevertheless, the availability of this outside

option leads to both a higher interest rate on deposits and a larger quantity of deposits.

If the interest rate on the digital currency is increased further, however, households begin

to shift funds out of bank deposits and into the digital currency, which causes a decline in

deposits and bank-funded investment, as in our model. To the extent that these effects are

important, our competitive framework can be thought of as providing an upper bound on

the costs of disintermediation and, therefore, a lower bound on the net benefits of introduc-

ing a deposit-like CBDC. Moreover, the policy tradeoff at the heart of our analysis is likely

to appear in some form across different market structures whenever credit market frictions

create the possibility that investment may be inefficiently low.

17 In a related work, Hu (2021) constructs a model with a pledgeability constraint on banks and a role for
currency in some anonymous meetings to study the implementation of optimal policy through the interest
rate on excess reserves. He also finds that overinvestment necessarily occurs when a liquidity premium
emerges on bank deposits.
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Interest on reserves. An alternative way of increasing the stock of liquid assets in the

economy would be for the central bank to provide reserves to private banks and rely on

those banks to intermediate the reserves into bank deposits. The effectiveness of such a

policy in our framework would depend critically on how bank reserves enter the plegdeability

constraint in equation (8). If bankers can only pledge a fraction θ < 1 of their matured

reserve holdings, those banks with the highest producivities γj would be able to create some

additional deposits. However, the ability of the banking system to create additional deposits

would still be limited, making the policy less effective than issuing a deposit-like CBDC.

If bankers could instead fully pledge their future income from reserve holdings to de-

positors, this alternative arrangement would be equivalent to a deposit-like CBDC in our

framework. Adrian and Mancini-Griffoli (2021) call this approach a synthetic CBDC, since

it generates the same allocation as a (deposit-like) CBDC but does not require the central

bank to deal with retail clients. Proposals for a synthetic CBDC often aim to link depositors’

claims as closely as possible to the underlying reserves. For example, creating narrow banks

that hold only central bank reserves as assets can be interpreted as a way of increasing the

pledgeability parameter θ for reserves. Our results here apply to a synthetic CBDC as well

as the case where depositors hold direct claims on the central bank.

Fiscal implications. Some observers have expressed concern about the fiscal implications

of introducing an interest-bearing CBDC. Replacing physical currency with an interest-

bearing digital currency would indeed tend to reduce seigniorage revenue. Such a change

could potentially raise political-economy issues that are absent in our framework, including

for central bank independence (see, for example, the discussion in Williamson, 2021b). It is

worth emphasizing, however, that paying interest on a deposit-like CBDC does not create a

fiscal burden on the public sector. In fact, if the CBDC interest rate is set below µ/β, so that

both deposits and CBDC carry a liquidity premium in equilibrium, introducing a deposit-

like CBDC creates a net fiscal benefit. In the period a deposit-like CBDC is introduced,

the public sector receives an inflow of goods in exchange for the newly-issued currency. In

our model, these funds are transferred lump-sum to households. In subsequent periods, the

public sector taxes these same households to fund the interest payments on a CBDC. Given

the quasi-linear specification of preferences, agents value any stream of transfers and taxes

using discount factor β. As long as the real interest rate paid on a CBDC is less than β−1,

therefore, the present value of all future taxes will be smaller than the transfer received by

households in the initial period.
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Figure 3: Desirability of targeted CBDCs

4.4 Dual CBDCs

Figure 3 shows the combinations of parameter values (θ, ν) under which each type of digital

currency is desirable for three different values of the density η of the productivity distribution.

In line with Proposition 3, a cash-like digital currency is desirable whenever the welfare

weight ν given to the DM consumption of type 1 buyers is above a cutoff value ν̄ that

is independent of both θ and η. A deposit-like CBDC is desirable for all values of the

credit friction parameter θ when η is small enough, in line with Proposition 5, but only for

intermediate values of θ when η is larger. The figure shows that, depending on parameter

values, neither type of CBDC may be desirable, either type alone may be desirable, or both

types may be desirable.

In this last case, the optimal policy is a dual-CBDC system.18 Using Propositions 2

and 4, it is straightforward to show that if we expand our model to allow the central bank

to issue both targeted CBDCs at once, the equilibrium allocation will be
(
qC1 , q

D
2 , γ̂

D
)
. In

other words, the interest rate on the cash-like CBDC determines DM production in type 1

meetings, while the interest rate on the deposit-like CBDC determines both DM production

in type 2 meetings and CM investment. Figure 3 indicates that a dual-CBDC system tends

to be optimal when ν is large and θ is in an intermediate range.

When a dual-CBDC system is optimal, the interest rates the policy maker sets on the

two types of CBDCs will typically differ. To illustrate this point, Figure 4 plots the optimal

nominal interest rate on a cash-like CBDC (in blue) and on a deposit-like CBDC (in red)

using the parameter values from panel (a) of Figure 3. The welfare weight ν on type 1

18 The possibility of simultaneously issuing two distinct types of CBDC is discussed in European Central
Bank (2020, Section 5.2).
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Figure 4: Optimal CBDC interest rates

DM consumption is set to 0.95, which implies an optimal interest rate on a cash-like CBDC

of about 1%. When θ is small, the optimal net interest rate on a deposit-like CBDC is

negative. In this region, type 2 buyers would prefer to use the cash-like CBDC if possible.

Implementing the desired allocation requires the design of the cash-like CBDC to be truly

restrictive, meaning it cannot be used as a substitute for bank deposits. When θ is large,

the opposite issue arises: the optimal interest rate on the deposit-like CBDC is higher than

on the cash-like CBDC. Implementing the desired allocation in this region requires ensuring

the cash-like CBDC cannot be used in place of deposits.

A similar issue can arise when the optimal policy involves only one type of CBDC.

Consider, for example, parameter combinations in the northwest corner of panel (c) in Figure

3. Because ν is close to 1, the optimal interest rate on a cash-like CBDC is close to the

Friedman rule, which is much higher than the equilibrium interest rate on deposits. The

policy maker does not want a digital currency used in type 2 meetings in this region because

disintermediating banks is too costly. Implementing the desired allocation in this region

again requires having a design for the cash-like digital currency that prevents it from being

used in type 2 meetings, despite its attractive interest rate.

This discussion raises an important question: Is it truly feasible to design such restricted-

use digital currencies? Or would a CBDC necessarily be at least partially subsitutable for

both bank deposits and physical currency? In the next section, we study the interactions

that arise when a CBDC can be recognized by all sellers and study how these interactions

change the optimal policy.
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5 A universal digital currency

We now assume it is not technologically feasible to design targeted digital currencies that

can only be used in a single type of DM meeting. Instead, a CBDC is necessarily universal,

meaning that it can be recognized by all sellers. The central bank is now more constrained:

it has a single instrument – the interest rate on the universal CBDC – and must consider

its effects on both types of DM meetings as well as on CM investment. In this section, we

derive the conditions under which this new constraint binds at the optimal policy and show

that a CBDC is still often desirable even when the central bank cannot restrict its use.

5.1 Equilibrium and optimal policy

When a digital currency can be used universally, the buyer’s liquidity constraints in equation

(3) become

f1 (a) = (m, 0, e) and f2 (a) = (0, d, e) .

A type 1 buyer can pay with any combination of physical and/or digital currency, while a

type 2 buyer can pay with any combination of deposits and/or digital currency.

Given an interest rate 1 + i, the analysis of equilibrium with a universal CBDC is a

straightforward extension of the analyses with targeted CBDCs above. If the policy maker

sets a negative nominal interest rate on the digital currency, i < 0, it will not be held by type

1 buyers. In this region, a universal CBDC will generate the same equilibrium allocation as

a deposit-like CBDC and the results in Proposition 4 apply. If the policy maker sets i > 0,

the digital currency will replace physical currency for type 1 buyers. These are two cases in

this region. If 1 + i ≤ µ
(
1 + rN

)
, the digital currency will not be held by type 2 buyers. In

this case, a universal CBDC generates the same equilibrium allocation as a cash-like CBDC

and the results in Proposition 2 apply. If, instead, 1 + i > µ
(
1 + rN

)
, the digital currency

will also be held by some type 2 buyers. In this case, the outcomes of type 1 meetings are

determined by Proposition 2 and both the outcomes of type 2 meetings and CM investment

are determined by Proposition 4.

The analysis of optimal policy, in contrast, is considerably more complex. The policy

maker will choose the CBDC interest rate 1+i in the interval
[
µ
(
1 + rN

)
, µ/β

]
to maximize

WU (1 + i) ≡ η

∫ γ̄

1+i
θµ

(βγ − 1) dγ + αλ1

[
νu
(
qU1 (1 + i)

)
− w

(
qU1 (1 + i)

)]
(23)

+αλ2

[
u
(
qU2 (1 + i)

)
− w

(
qU2 (1 + i)

)]
,

where qU1 (1 + i) = qC1 (1 + i) from equation (15) and qU2 (1 + i) = qD2 (1 + i) from equation
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(21). This problem is equivalent to the optimal policy problem with two targeted CBDCs

studied in Section 4.3 above with the additional constraint that the two CBDC interest

rates must be equal. In the next subsection, we study when and how this constraint binds

at the optimal policy. We then provide conditions in Section 5.3 that guarantee a CBDC is

desirable when it must be universal.

5.2 Comparing universal and targeted CBDCs

Our next result characterizes the conditions under which the constraint associated with a

universal CBDC does not bind at the solution to the optimal policy problem.

Proposition 6. The optimal policy under a universal CBDC implements the same allocation

as under two targeted CBDCs if and only if at least one of the following conditions holds:

(i) 1 + iC = 1 and 1 + iD = µ
(
1 + rN

)
,

(ii) 1 + iC = 1 + iD,

(iii) 1 + iC ≤ 1 + iD = µ
(
1 + rN

)
, or

(iv) 1 + iC = 1 ≥ 1 + iD.

It is straightforward to see that each of these four conditions is sufficient to ensure that

a universal CBDC can implement the same allocation as two targeted CBDCs under the

optimal policy. Condition (i) corresponds to a situation where neither of the targeted CBDCs

are desirable. The same allocation can trivially be implemented with a universal CBDC by

setting the interest rate low enough that no one chooses to hold it. In condition (ii), the

two targeted CBDCs have exactly the same optimal interest rate. Setting the interest rate

on a universal CBDC to this common value clearly leads to the same equilibrium allocation.

Under condition (iii), a deposit-like CBDC is not desirable and the optimal interest rate on a

cash-like CBDC is low enough that no type 2 buyers would choose to hold it. In this case, the

optimal policy sets iU = iC and the digital currency is only held by type 1 buyers. Finally,

under condition (iv), a cash-like CBDC is not desirable and the optimal nominal interest

rate on the deposit-like CBDC is non-positive. The optimal policy then sets iU = iD < 0,

which ensures the digital currency is only held by type 2 buyers.

The less obvious part of Proposition 6 is that these four conditions are the only situations

in a which a universal CBDC can implement the optimal allocation with two targeted CB-

DCs. In all other cases, the restriction that the CBDC interest rate must be the same in both

types of meetings binds at the optimal policy and alters the resulting equilibrium allocation.

In these cases, the policy maker sets the single CBDC interest rate considering both of the
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tradeoffs discussed above: between financial inclusion and facilitating illicit activity in type

1 DM meetings, and between efficient exchange in type 2 DM meetings and CM investment.

The resulting optimal policy can impact CBDC usage along both the intensive and ex-

tensive margins. On the intensive margin, the optimal universal CBDC interest rate may

be either higher or lower than the optimal rate on a targeted CBDC, which implies that

buyers of a given type may hold either larger or smaller digital currency balances. On the

extensive margin, a universal CBDC may be used in either fewer or more types of meetings

than targeted CBDCs. We illustrate these possibilities by extending the examples discussed

above to the case of a universal CBDC.

Intensive margin effects. Consider first the optimal interest rates for the two targeted

CBDCs presented in Figure 4. The dashed green line depicts the optimal interest rate on a

universal CBDC. When θ is large (above about 0.86), the optimal universal rate lies between

the (higher) deposit-like rate and the (lower) cash-like rate. In this region, a universal CBDC

will lead to higher real balances for type 1 buyers but to lower real balances for type 2 buyers

compared with a dual-CBDC system. For one particular value of θ (about 0.86), the two

restricted rates are equal, which implies condition (ii) of Proposition 6 is satisfied and a

universal CBDC leads to the same outcome as the targeted CBDCs. For slightly lower

values of θ, a universal CBDC leads to lower real balances for type 1 buyers and higher

balances for type 2 buyers. This same pattern applies whenever a universal CBDC is used in

both types of meetings: compared to the allocation with two targeted CBDCs, production

and exchange increase for one type of meeting and decrease for the other.

Extensive margin effects. Once θ falls below about 0.835 in the example in Figure

4, the universal interest rate that would optimally balance the policy maker’s competing

concerns becomes negative, which implies that type 1 buyers would prefer physical over

digital currency. In this region, the optimal policy is to instead set the universal rate equal

to the optimal deposit-like rate, 1 + iD, and have the digital currency only used in type 2

meetings. In other words, the constraints imposed by a universal CBDC lead in this case to

a change in CBDC usage on the extensive margin, as type 1 buyers no longer hold a CBDC

under the optimal policy.

This change in the extensive margin can also be seen in Figure 5, which depicts the

type(s) of meeting(s) in which a universal CBDC is used under the optimal policy for the

same parameter values as Figure 3. In panel (a), a universal CBDC is used in both types

of meetings under the optimal policy when θ is large, but only in type 2 meetings when θ is

sufficiently small. Comparing this graph with panel (a) of Figure 3 verifies that, when ν is

large and θ is small, a universal CBDC is used in fewer types of meetings than are targeted

CBDCs. At the same time, however, panel (a) also shows that a universal CBDC is used in
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Figure 5: Desirability of a universal CBDC

more types of meetings when ν is small and θ is large. In this latter region, only a deposit-

like CBDC is desirable and the optimal interest rate on this CBDC is positive. When the

CBDC is universal, the policy maker could only prevent its use in type 1 meetings by setting

an interest rate of zero or lower, which would substantially distort the allocation in type

2 meetings as well as CM investment. Instead, the optimal policy involves an interest rate

lower than that on a deposit-like CBDC, but still positive, which implies the digital currency

will be used in both types of meetings. Comparing the other panels of Figures 3 and 5 yields

additional examples where a universal CBDC circulates either more or less widely than two

targeted CBDCs.

The two figures also highlight situations in which a targeted CBDC is desirable but

a universal CBDC is not. In panel (b) of Figure 3, for example, a deposit-like CBDC is

desirable when θ is around 0.9 and ν is small. For a universal CBDC to be attractive to

type 2 buyers in this region, however, it would need to carry a positive interest rate and

would, therefore, also attract type 1 buyers. Because ν is low, such a policy is unattractive

and Figure 5 shows it is instead optimal not to issue CBDC. This region of parameter space

corresponds to a situation in which the concern about facilitating illicit activity is strong

enough to make an otherwise-useful CBDC undesirable. Another interesting case is the

vertical white “stripe”in the middle of panel (c) in Figure 5. A cash-like CBDC is desirable

in this region when ν > ν̄. If the CBDC is universal, however, it would also be attractive

to type 2 buyers. The resulting disintermedation of banks and decrease in CM investment

would lower overall welfare and, as a result, the optimal policy is not to issue a CBDC in

this region.
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5.3 Desirability of a universal CBDC

While the examples above illustrate how a universal CBDC often generates lower welfare than

a pair of targeted CBDCs, Figure 5 also emphasizes that a universal CBDC is nevertheless

often desirable. The next result provides three sets of sufficient conditions for a universal

digital currency to raise welfare under the optimal policy.

Proposition 7. A universal digital currency is desirable if any of the following sets of

conditions holds:

(i) ν >
αβ

µ− (1− α) β
and 1 + rN >

1

µ
;

(ii) ν >
αβ

µ− (1− α) β
and 1 + rN <

θ

β
; or

(iii) 1 + rN <
1

µ
and 1 + rN <

θ

β
.

In the first two cases, the policy maker would like to increase production and exchange

in type 1 meetings and, therefore, the optimal interest rate on a cash-like CBDC would

be positive. With a universal CBDC, however, the policy maker needs to also take into

account its effects on type 2 meetings and CM investment. In case (i), the nominal interest

rate on deposits in the baseline economy economy with no CBDC is strictly positive. The

policy maker can, therefore, introduce a digital currency with a small positive interest rate

that improves efficiency in type 1 meetings without affecting type 2 meetings and CM in-

vestment. In case (ii), the baseline economy exhibits overinvestment. A universal CBDC

with a small positive interest rate will again improve efficiency in type 1 meetings and, if it

causes the interest rate on deposits to rise, will also improve efficiency in type 2 meetings

and CM investment. Finally, in case (iii), the baseline economy exhibits overinvestment and

a negative nominal interest rate on deposits. In this case, a universal CBDC that offers a

slightly higher interest rate can improve efficiency in type 2 meetings and in CM investment

without affecting production and exchange in type 1 meetings. The logic of this third case

can alternatively be stated in terms of the density η of productivities. As demonstrated in

the proof of Proposition 5, the gross interest rate on deposits in the baseline economy will

satisfy both conditions of case (iii) if η is small enough. We record this result as a corollary.

Corollary 2. There exists η̄U > 0 such that η < η̄U implies a universal digital currency

raises welfare under the optimal policy.

Turning to the question of the optimal interest rate on a universal digital currency, the

logic of the first two cases in Proposition 7 can be extended to identify a lower bound. If the
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policy maker would like to increase production and exchange in type 1 meetings, then the

CBDC interest rate should be large enough to at least ensure there is not overinvestment in

the CM.

Corollary 3. If ν > αβ
µ−(1−α)β

, the optimal interest rate on a universal CBDC satisfies

1 + i ≥ θµ
β

.

In summary, when a central bank cannot target a digital currency to compete only

with a single existing type of payment, it must choose the CBDC interest rate to balance

multiple concerns. A universal CBDC should not be too attractive relative to cash, to avoid

facilitating illicit activities. It should offer an efficient alternative to bank deposits, but not so

much as to unduly disintermediate banks. Our analysis shows that, despite the constraints,

a CBDC is often desirable. In these cases, the digital currency may only be used in one

type of meeting under the optimal policy, even though it is universally accepted. It will tend

to compete with bank deposits when productive projects are scarce and/or credit market

frictions are strong. In contrast, a universal CBDC will tend to compete with physical

currency only when productive projects are plentiful and credit market frictions are small.

6 Central Bank Lending

When the central bank issues Ēt units of digital currency, it receives φtĒt units of CM good

in exchange. Our analysis above assumes these goods are distributed to agents as lump-sum

transfers. Might the crowding-out effect we identify be mitigated or eliminated if the central

bank were instead to lend these goods back to banks in the deposit market? To answer this

question, we extend our model as follows. Suppose the central bank introduces a deposit-

like CBDC and sets the interest rate i so the quantity held by type 2 buyers is positive. In

addition, suppose the central bank lends an amount b of goods (measured per type 2 buyer)

into the deposit market in each period. Letting dt continue to denote the deposit of a type

2 buyer, the market-clearing condition for deposits in equation (11) becomes

λ2 (dt + b) = η

(
γ̄ − 1 + rt

θ

)
. (24)

Note that this equation can also be interpreted as the balance-sheet identity for the banking

system; on the left-hand side are the liabilities of banks to depositors and the government,

while the funded projects on the right-hand side are the banking system’s assets. In equi-

librium, deposits and digital currency will have the same return 1 + rt. Using this fact and
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equation (24) in the first-order condition of a type 2 buyer in equation (6) yields

1

β (1 + rt)
= L

(
(1 + rt)

(
η

λ2

(
γ̄ − 1 + rt

θ

)
+ e2t − b

))
. (25)

The equilibrium conditions for the model with a deposit-like digital currency and central

bank lending are then equations (13), (18), and (25).

When b = 0, equation (25) reduces to (19) and the equilibrium allocation is the same as in

the previous section. When the central bank instead sets b > 0, the equilibrium real interest

rate 1+rt does not change, since equation (18) must still hold. It follows immediately that the

set of projects satisfying the funding constraint, given on the right-hand side of equation (24),

is unchanged. The left-hand side of this equation shows, therefore, that central bank lending

must crowd out buyers’ deposits one-for-one. At the same time, equation (25) shows that

central bank lending will increase the digital currency holdings of type 2 buyers, so that the

difference e2t−b is unchanged. In other words, for each dollar lent by the central bank, private

agents decrease their bank deposits and increase their digital currency holdings by exactly

one dollar, leaving the equilibrium allocation unchanged. Rather than mitigating the effects

of a digital currency on investment, central bank lending creates further disintermediation

of private deposits. We summarize this result in the following proposition.

Proposition 8. Suppose eD2 > 0. If the central bank lends an amount b ∈
[
0, dD

]
in the

deposit market, (i) private bank deposits decrease by b, (ii) digital currency held by type 2

buyers increases by b, and (iii) equilibrium consumption allocations are unchanged.

This result is related to Brunnermeier and Niepelt (2019), who establish an equivalence

result between the use of public and private money. Their result can be seen in the context

of our model as follows. Suppose the central bank introduces a deposit-like CBDC and sets

the interest rate (1 + i) equal to the equilibrium interest rate on deposits when there is no

digital currency, µ
(
1 + rN

)
. In the absence of central bank lending, our results from the

previous sections show that the digital currency will not be held in equilibrium, that is,

eD2 = 0. Now suppose the government lends b > 0 in the deposit market. Proposition 8

shows that type 2 buyers will substitute b units of digital currency for bank deposits, so that

eD2 becomes positive. In this way, the central bank could introduce a digital currency that

is held in equilibrium without changing the equilibrium allocation of resources, in line with

the Brunnermeier-Niepelt equivalence result.19

19 See also Niepelt (2020) and Fernández-Villaverde et al. (2021). In practice, additional operational issues
such as haircuts and acceptable collateral arise when the central bank lends to the private sector in the
process of creating CBDC; see Assenmacher et al. (2021).
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However, our analysis in the previous sections shows that setting (i+ i) = µ
(
1 + rN

)
is

often not the optimal policy. Instead, Proposition 5 and Figure 3 show that the policy maker

can often raise welfare by setting the interest rate higher. Proposition 8 demonstrates that

central bank lending cannot mitigate the resulting tradeoff between efficiency in exchange

and CM investment because it substitutes one form of inside money (bank deposits) with

another (a CBDC backed by loans to the private sector).20 The fundamental tradeoff in our

model arises when the policy maker sets the CBDC interest rate to increase the real stock

of outside money, which promotes efficient exchange but tends to crowd out inside money

and decrease investment.

7 Concluding Remarks

The introduction of a central bank digital currency would represent a potentially historic

innovation in monetary policy. If households and firms choose to hold and use significant

quantities of such a currency, it could lead to substantial shifts in the types of assets used in

exchange as well as in liquidity premia. While the possibility of such a shift has been widely

discussed in policy circles, its macroeconomic implications remain uncertain.

Our analysis shows how a fairly standard model in the New Monetarist tradition can

generate insight into these issues. In particular, it highlights important policy tradeoffs

that arise when digital currency competes with cash and with bank deposits. If a digital

currency provides current cash users with a better means of payment, a tradeoff arises

between promoting financial inclusion and facilitating illicit activities. If a digital currency

competes with bank deposits, a tradeoff arises between promoting efficient exchange and

efficient investment. If the central bank is able to design separate, targeted digital currencies

for each of these uses, it can set the interest rates and other design features to manage each

tradeoff. If a digital currency is instead universal, the central bank must design it with both

tradeoffs in mind.

Our analysis shows that a cash-like digital currency is desirable if the financial inclusion

motive is sufficiently strong. A deposit-like digital currency tends to be desirable when the

supply of productive projects is small relative to the transactions demand for deposits and

when financial frictions are moderate. If digital currency is universal, these same patterns

apply but interact in ways that may lead the currency to circulate either more or less widely

than targeted digital currencies would. Taken together, our results show how a digital

currency could potentially be an important tool for central banks in managing aggregate

20 See Lagos (2010) for a discussion of the distinction between inside and outside money, including situations
where the public sector holds private claims.
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liquidity and provide guidance for using this new tool.

The introduction of a central bank digital currency also raises issues that lie outside the

scope of our analysis, of course. For example, policy makers have expressed concern that,

by providing a safe alternative to bank deposits, a digital currency could facilitate runs on

the banking system in periods of financial stress.21 Digital currencies can also be held and

used internationally much more easily than physical currency, which could potentially alter

capital flows and interact with domestic monetary policy. Understanding these issues and

how they relate to the fundamental effects of a CBDC identified in our analysis is a promising

area of ongoing research.
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