The Liquidity Coverage Ratio and Monetary Policy Implementation

Morten Bech
Bank for International Settlements

Todd Keister
Rutgers University

The views expressed herein are those of the authors and do not reflect the views of the Bank for International Settlements.

Federal Reserve Board
May 8, 2013
Basel III introduces a framework for **liquidity** regulation

- **objective**: ensure banks hold a more liquid portfolio of assets, limit maturity mismatch

- **Two components**:
 - **Liquidity Coverage Ratio (LCR)**:
 - bank must have sufficient quantity of high-quality liquid assets to survive as 30-day period of market stress
 - **Net Stable Funding Ratio (NSFR)**
 - establishes minimum amount of funding from “stable” sources

- **Scheduled implementation**: Jan 2015 (LCR), Jan 2018 (NSFR)
Definition

\[LCR = \frac{\text{Stock of unencumbered high-quality liquid assets}}{\text{Net cash outflows in a 30-day stress scenario}} = \frac{HQLA}{NCOF} \]

- **HQLA**: cash, reserves, govt. bonds, certain other securities
- **NCOF Scenario**: partial loss of retail deposits, significant loss of wholesale funding, contractual outflows from a 3-notch ratings downgrade, and substantial calls on off-balance sheet exposures

- Requirement:

 \[HQLA \geq NCOF \]

 or

 \[LCR \geq 100\% \]
How might the introduction of an LCR affect monetary policy implementation?

Many central banks target the interest rate on interbank loans ...
... of reserve balances (a high-quality liquid asset)

If the LCR changes the demand for such loans,
- it seems likely to change the structure of market interest rates

Would like to understand:
- how the LCR is likely to affect interbank interest rates
- whether these effects could impair a CB’s ability to move the interest rate to target
Our approach

- Develop a simple model to analyze this issue
 - difficult question; this is a first step
 - goal is to identify possible implications of the LCR
- We start with a standard framework based on Poole (1968), others
 - add an LCR requirement, term interbank lending
- We study a generic operational framework
 - symmetric corridor system; no reserve averaging
 - can be adapted to specific approaches of various central banks
When banks face the possibility of an LCR shortfall:

- the LCR tends to push down the overnight rate
- yield curve becomes steeper at the very short end

Moreover, the form of central bank operations matters (treasury securities vs. other assets; counterparties; purchases vs. repos)

- in some cases, LCR makes overnight rate more responsive to OMOs, but in other cases it becomes less responsive
- in some cases, yield curve steepens as the central bank adds reserves, but in other cases it flattens

Conclude: the LCR will make implementing monetary policy more difficult

- central banks may want to rethink their operational procedures
Review the standard model of monetary policy implementation

Introduce the LCR
- two general results

Effects of open market operations
- examine four different types of operations
- show the outcomes are different in each case

Possible adjustments

Committed credit lines

Conclusions
Each bank begins with:

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loans (L)</td>
<td>Deposits (D - \varepsilon)</td>
</tr>
<tr>
<td>Bonds (B)</td>
<td>Interbank borrowing (\Delta)</td>
</tr>
<tr>
<td>Reserves (R + \Delta - \varepsilon)</td>
<td>Equity (E)</td>
</tr>
</tbody>
</table>

Faces a reserve requirement:

\[
\text{Reserves} \geq K
\]

Can borrow and lend in an overnight interbank market.

After markets close, bank experiences end-of-day payment shock \(\varepsilon\):

- unanticipated late-day customer payment (or deposit inflow)

If \(R + \Delta - \varepsilon < K\), bank must borrow from central bank’s standing facility.
- Bank chooses Δ to maximize expected profit

$$\Pi = r_LL + r_BB - r_DD + r_{IORR}K - r\Delta + \begin{cases} r_{IOER}(R + \Delta - \varepsilon - K) & \text{if } > 0 \\ r_{DW}(R + \Delta - \varepsilon - K) & \text{if } < 0 \end{cases}$$

- Given $R + \Delta - K$, amount bank must borrow from discount window is:

- Optimal choice:

$$r = r_{IOER} \times \text{prob}[- \varepsilon < \varepsilon_K] + r_{DW} \times \text{prob}[\varepsilon > \varepsilon_K]$$
Equilibrium

- Net interbank lending $= 0 \Rightarrow \varepsilon_K^*$ is determined by $R - K$

$$r^* = r_{IOER} (\text{prob}[\varepsilon < \varepsilon_K^*]) + r_{DW} (\text{prob}[\varepsilon > \varepsilon_K^*])$$

- Central bank influences r^* through open market operations
 - only the size of the operation (ΔR) matters; not the structure
Our model

- Include both overnight and term loans
 - but still an essentially static framework
- Introduce an LCR requirement:
 \[LCR = \frac{B + R + \Delta + \Delta_T}{\theta_D D + \Delta} = \frac{HQLA}{NCOF} \]
- Runoff rates for different types of liabilities:
 - deposits: \(\theta_D = 5\% \) or \(10\% \)
 - overnight borrowing: \(100\% \)
 - term borrowing: \(0\% \)
- Banks again begin the period with:

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loans (L)</td>
<td>Deposits (D - \varepsilon)</td>
</tr>
<tr>
<td>Bonds (B)</td>
<td>Interbank borrowing (\Delta + \Delta_T)</td>
</tr>
<tr>
<td>Reserves (R + \Delta + \Delta_T - \varepsilon)</td>
<td>Equity (E)</td>
</tr>
</tbody>
</table>

- Reserve requirement is still:

\[
\text{Reserves} \geq K
\]

- Borrow and lend in both overnight and term overnight interbank markets

- Both markets close, then bank experiences end-of-day payment shock \(\varepsilon \)
• Bank borrows from CB if needed to meet *either* requirement

• Amount borrowed \((X)\) satisfies both

\[
R + \Delta + \Delta_T - \varepsilon + X \geq K
\]

and

\[
LCR = \frac{B + R + \Delta + \Delta_T - \varepsilon + X}{\theta_D(D - \varepsilon) + \Delta + \theta_{DW}X} \geq 1
\]

• Borrowing from central bank has runoff rate of \(\theta_{DW}\)

 • baseline case: \(\theta_{DW} = 0\%\) (*i.e.*, DW is treated as term funding)
In equilibrium:

\[r^* = r_{IOER}(\text{prob}[\varepsilon < \hat{\varepsilon}]) + r_{DW} \text{prob}[\varepsilon > \hat{\varepsilon}] \]

\[r_T^* = r^* + (r_{DW} - r_{IOER})\text{prob}[\varepsilon_C < \varepsilon < \hat{\varepsilon}] \]
If the LCR is a binding concern in some states of nature (that is, if $\varepsilon_C^* < \varepsilon_K^*$):

1. the overnight rate r^* is lower than in the standard model
2. the term rate r_T^* is higher than in the standard model

In addition, open market operations change banks’ LCR position (that is, change ε_C^*)

- direction, size of change depend on how operation is structured

\Rightarrow effect of an operation on (r^*, r_T^*) depends on how it is structured

- next: examine four possibilities
OMOs (1): Purchases of HQLA from banks

- Suppose central bank buys bonds and banks are net sellers
- Operation leaves the LCR of the banking system unchanged:

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loans</td>
<td>Deposits</td>
</tr>
<tr>
<td>Bonds</td>
<td>Deposits</td>
</tr>
<tr>
<td>Reserves</td>
<td>Equity</td>
</tr>
</tbody>
</table>

\[LCR_z = \frac{B - z + R + z}{\theta_D D} = LCR_0 \]

- the likelihood of a bank violating its LCR constraint is unchanged
- but the likelihood of violating its reserve requirement falls

⇒ equilibrium term premium must increase
- Start from a situation where the LCR is never a binding concern:

- When central bank buys bonds:

- same r^* as with no LCR
- no term premium

- r^* falls more than in the standard model
- a term premium arises
- Effect of open market operations on equilibrium interest rates

- assuming initial LCR of the banking system is well above 100%

As reserves increase, eventually LCR is a binding concern in some states
If the initial LCR of the banking system is lower:

- Adding reserves tends to create a term premium.
- Overnight rate becomes highly responsive to z.
- Term rate becomes unresponsive to z.

Results:
- Adding reserves tends to create a term premium.
- Overnight rate becomes highly responsive to z.
- Term rate becomes unresponsive to z.

OMOs (2): Purchases of non-HQLA from banks

- Now suppose central bank buys z loans (non-HQLA) from banks
- Operation raises the LCR of the banking system:

\[
\begin{align*}
\text{Assets} & \quad \text{Liabilities} \\
\text{Loans} & \quad L - z \quad \text{Deposits} \quad D \\
\text{Bonds} & \quad B \\
\text{Reserves} & \quad R + z \quad \text{Equity} \quad E \\
\end{align*}
\]

\[
\Rightarrow LCR_z = \frac{B + R + z}{\theta DD} > LCR_0
\]

- likelihood of a bank violating its reserve requirement falls (as before)
- likelihood of violating its LCR requirement falls by more

\[
\Rightarrow \text{equilibrium term premium tends to decrease}
\]
Effect of open market operations on equilibrium interest rates

- assuming initial LCR of the banking system is well above 100%

As reserves decrease, LCR eventually becomes a binding concern in some states.
If the initial LCR of the banking system is lower:

- Results:
 - **draining** reserves tends to create a term premium
 - overnight rate becomes **less** responsive to \(z \)
 - term rate becomes (slightly) **more** responsive to \(z \)
Now suppose central bank buys \(z \) bonds and net sellers are non-banks.

Operation raises the LCR of the banking system:

\[
\begin{array}{c|c|c|c}
\text{Assets} & \text{Liabilities} \\
\hline
\text{Loans} & L & \text{Deposits} & D+z \\
\text{Bonds} & B & \text{Equity} & E \\
\text{Reserves} & R+z & & \\
\end{array}
\]

\[LCR_z = \frac{B + R + z}{\theta_D (D + z)} > LCR_0 \]

- likelihood of a bank violating both requirements falls (as before)
- relative importance depend on distribution of payment shock

\[\Rightarrow \text{equilibrium term premium may increase or decrease} \]
Effects of OMOs are a hybrid of the two previous cases:

- Higher initial LCR
- Lower initial LCR

r^*_D, r^*_T

r_DW

r_{IOER}

r^*_T

Z

Z

higher initial LCR

lower initial LCR

red: term

blue: overnight
Now suppose central bank conducts repos against HQLA with banks

Operation decreases the LCR of the banking system:

\[
\begin{array}{c|c}
\text{Assets} & \text{Liabilities} \\
\hline
\text{Loans} & \text{Deposits} \\
L & D \\
\text{Bonds} & \text{CB repo} \\
B & z \\
- \text{encumb.} & \frac{z}{1-\alpha} \\
\text{Reserves} & \text{Equity} \\
R + z & E \\
\end{array}
\]

\[
\Rightarrow LCR_z = \frac{B + R - \frac{\alpha}{1-\alpha} z}{\theta_D D} < LCR_0
\]

If haircut (\(\alpha\)) is zero, effect is same as outright purchases

but with a positive haircut …
Effect of open market operations via repos (using HQLA)

- Term premium is larger with repos than with outright purchases
 - difference is increasing in the size of the haircut
Summarizing the results

- An LCR tends to push the **overnight** rate **down** and **term** rate **up**

- The effects of an open market operation depends on the **details** (which were irrelevant in the standard model)
 - in some cases, the overnight rate becomes more responsive to OMOs; in other cases it becomes less responsive
 - in some cases, the term premium widens as reserves are added; in other cases it narrows
 - effects tend to be stronger with repos than with outright purchases/sales
 - some of these factors that may be outside of central bank’s control (i.e., are ultimate counterparties banks or non-banks?)

⇒ Implementing monetary policy may be significantly more difficult
Possible adjustments

- How might a central bank effectively implement monetary policy?
 - Lend assets other than reserves (like TSLF program)
 - separate provision of LCR “liquidity” from discount window
 - Create a committed liquidity facility (CLF)
 - sell committed credit lines; planned in Australia, South Africa
 - Switch to targeting a term rate
 - Allow banks to meet LCR on average over time
- Determining the best approach requires a broader model
 - Need to integrate our analysis with the objectives of the regulation
Committed credit lines

- The LCR rules allow “committed liquidity” to count toward HQLA
 - subject to some rules/restrictions

- In our model:

\[
LCR = \frac{B + R + \Delta + \Delta_T + F}{\theta_D D + \Delta}
\]

where \(F = \) quantity of committed funds

- Let \(\phi = \) price of $1 of committed liquidity
 - no arbitrage \(\Rightarrow\) \(\phi^* = r_T^* - r^*\)
Banks’ demand for committed liquidity in equilibrium:

If committed liquidity can only come from banks:

- equilibrium condition: $F = 0 \implies \phi^*$
- equilibrium term premium unchanged from earlier analysis

Diagram:
- ϕ vs F graph with point ϕ^*
- OMOs shift demand curve right/left.
- If committed liquidity can be supplied from outside the banking system:
 - Mitigates the term premium ...
 - but by moving maturity transformation outside of the banking system
 - OMOs have less impact on term premium, but ... will change F^*

Raises financial stability concerns?
- Central bank can create a Committed Liquidity Facility (CLF)

- Can auction a fixed quantity or operate a standing facility
 - Mitigates term premium by moving maturity transformation to the CB
- Would this undermine the purpose of liquidity regulation?
 - Perhaps not (Stein, 2013)
Conclusions

- Analysis is a first step … but offers results that are likely to be general
 - the LCR will tend to push **down** the overnight rate
 - and make the very short end of the yield curve **steeper**
 - both the **structure** and the size of central bank operations matter

General message:

- Central banks will likely need to pay attention to the LCR when implementing monetary policy
- More analysis is needed
 - determining more of banks’ portfolio choices within the model
 - tailoring the framework to different operating regimes
Extra Materials
Alternate case: $\theta_{DW} > \theta_D$

- Recall

$$LCR = \frac{B + R + \Delta + \Delta_T - \varepsilon + X}{\theta_D(D - \varepsilon) + \Delta + \theta_{DW}X} \geq 1$$

- LCR rules allow local supervisors to set $\theta_{DW} = 0$ (our baseline case) …
 - … or higher
 - the original LCR rules (in 2010) required $\theta_{DW} \geq 25$

- Analysis above applies to any $\theta_{DW} < \theta_D$

- For $\theta_{DW} < \theta_D$ …
When $\theta_{DW} > \theta_D$

In equilibrium:

$$r^* = r_{IOER} (\text{prob}[\varepsilon < \varepsilon_K] + \text{prob}[\varepsilon > \hat{\varepsilon}]) + r_{DW} \text{prob}[\varepsilon_K < \varepsilon < \hat{\varepsilon}]$$

$$r_T = r^* + \frac{r_{DW} - r_{IOER}}{1 - \theta_{DW}} \text{prob}[\varepsilon > \hat{\varepsilon}]$$

same basic pattern …
Effect of open market operations on equilibrium interest rates

- assuming initial LCR of the banking system is 100%

Effects highlighted above become stronger as θ_X increases

... but effects are magnified

- Effects highlighted above become stronger as θ_X increases

$\theta_X > 0$

$\theta_X = 0$
If θ_{DW} is large enough, the term interest rate can rise above r_{DW}:

\[\frac{1}{1 - \theta_X} > 1 \]

Happens because 1 of term funding can save a bank from borrowing from the discount window.