Discussion of:

Repo Runs

by Martin, Skeie & von Thadden

Todd Keister
FRBNY and NYU-Stern

November 12 2010
Overview

- Paper presents a model of potentially-fragile financial institutions
 - in the tradition of Diamond & Dybvig

- Uses this model to examine stability/fragility of different institutional arrangements for maturity transformation
 - commercial banking
 - tri-party repo, bilateral repo
 - money market mutual funds, etc.

- Shows that fragility depends on the details of the arrangements
My discussion

- Present a simpler model
 - 3 time periods
 - captures many (but not all) of the features of their model

- Use this model to summarize their results
 - relate them to the existing literature

- Offer some comments
A simple model

• $t = 0, 1, 2$

• mass N of investors with Diamond-Dybvig preferences

$$u(c_1, c_2) = \begin{cases} u_1(c_1) \\ u_2(c_2) \end{cases} \quad \text{with prob.} \quad \begin{cases} \alpha \\ 1 - \alpha \end{cases}$$

– endowment of 1 at $t = 0$, none later

– can store good between periods

• N dealers (or “banks”) with linear preferences

$$u(c_0, c_1, c_2) = c_0 + \beta c_1 + \beta^2 c_2$$

– large endowment at $t = 0$
Technologies

• Each dealer has access to an investment technology

 – investment at $t = 0$ yields $\{ \frac{1}{R > 1} \}$ at $t = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$

 – assume $\beta^2 R > 1$

 – maximum scale \bar{T}

• Dealers accept demand deposits from investors

 – offer interest rate $r > 1$ in each period

 – borrow an amount b_i (\sim leverage)
Intermediation

- Dealers’ demand for funds:

\[\sum b_i \]
Intermediation

- Dealers’ demand for funds:

\[\beta_1 D \]

- Investors supply funds inelastically

- Equilibrium borrowing \(\Sigma b_i \) is determined by supply \(N \)
Properties of equilibrium

- Note: individual b_i are indeterminate
 - each dealer is indifferent over a broad range
 - aggregate leverage is pinned down (by the supply of funds)
 - individual leverage can vary across dealers

- Dealers make profit (rents on their fixed-capacity technology)

⇒ Simple model captures many features of the overlapping-generations model in the paper
Fragility

• Is a dealer susceptible to a self-fulfilling run at $t = 1$?

• Dealer has:

<table>
<thead>
<tr>
<th>assets</th>
<th>liabilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>I</td>
<td>rb_i</td>
</tr>
</tbody>
</table>

• Can satisfy withdrawal demand even if all investors withdraw if

$$I \geq rb_i$$

• Otherwise, baseline bankruptcy rule:
 assets divided evenly among investors who withdraw early

• Dealer is fragile if and only if this “liquidity constraint” is violated
 – a patient investor who does not join the run receives zero
• Note: in the standard Diamond-Dybvig model, all funds come from depositors
 – the liquidity constraint is always violated
 – the bank is always susceptible to a run

• New here:
 – internal funds (capital, profits) can help a dealer survive a run
 – fragility depends on leverage b_i
• The literature following Diamond-Dybvig has focused on flexibility in the deposit contract (payment schedule)
 – banks don’t pay depositors at face value until everything is gone
 – suspension, rescheduling, etc. → state-contingent payoffs

• Question: are banks fragile when the deposit contract is endogenous?
 – answer depends on features of environment, esp. commitment

• The approach here is similar in spirit
 – examine fragility under specific institutional arrangements
Tri-party repo with “unwind”

- At $t = 1$, dealer borrows funds and repays all investors

- Asks investors if they want to reinvest until $t = 2$
 - offers unmatured investment as collateral
 - uses redeposited money to pay off intraday loan

- If insufficient funds are redeposited, dealer fails
 - note: happens only if liquidity constraint is violated
 - in this event, agents who did redeposit keep their collateral
 - investors discount value of collateral by $\gamma < 1$
• Key issue: payoffs available to a patient investor who expects a run
 – does not redeposit: r
 – redeposits: $\gamma R \kappa_i$

• Introduces a “collateral constraint”

$$\gamma R \kappa_i \geq r$$

 – dealer is fragile if this condition and liquidity constraint are violated

\Rightarrow Improvement over the baseline arrangement, but still fragile
Tri-party repo with no unwind

• Now suppose dealer asks “Who wants to roll over their repo loan?”
 – if sufficiently many agree, the dealer continues
 – otherwise, liquidate dealer, divide funds evenly among investors

• An investor’s payoff is now independent of his choice if others run
 – receives an even share of the collateral, regardless of his answer
 – no (strict) incentive to run

• Key feature: no way for an investor to “get out first”

⇒ This arrangement is stable (not fragile)
• Paper applies same methodology to other arrangements
 – bilateral repos, money market mutual funds, etc.

● Main point: the institutional arrangements generates a game
 – some games admit bad equilibria (fragility), others do not

Comments

● This is an interesting and worthwhile exercise
 – we observe different types of financial arrangements, some have appeared to be more robust than others
 – need a framework for understanding why

● My comments will focus on policy implications
(1) Why does this unwind arrangement exist?

- In the model, it is a clearly inferior arrangement

- Possible answers:
 - historical accident (perhaps combined with laziness)
 - it serves some useful purpose that is missing from the model

- Answer may not matter for a positive analysis of fragility
 ...but is clearly important for thinking about policy implications

 - is there scope for welfare-improving regulation? If so, what?
 - would want to be explicit about the source of market failure
2) Capital requirements and leverage ratios

• First thought: regulation of b_i would be very useful
 – dealers are indifferent over a wide range
 – a cap on b_i might costlessly eliminate fragility of high-leverage dealers

• But .. if dealers anticipate a possible run, they will not be indifferent

• The model treats a run as an unexpected shock
 – makes normative analysis of ex ante regulation difficult

• Could you add a probability $q > 0$ of a run?
Summary

- Interesting paper

- Current approach focuses on positive analysis of fragility

- What can be done in terms of normative analysis?
 - there are a lot of interesting policy questions
 - here, or in future work