Discussion of:

Repo Runs

by Martin, Skeie & von Thadden

Todd Keister FRBNY and NYU-Stern

November 12 2010

The views expressed herein are my own and do not necessarily reflect those of the Federal Reserve Bank of New York or the Federal Reserve System.

Overview

- Paper presents a model of potentially-fragile financial institutions
 - in the tradition of Diamond & Dybvig
- Uses this model to examine stability/fragility of different institutional arrangements for maturity transformation
 - commercial banking
 - tri-party repo, bilateral repo
 - money market mutual funds, etc.
- Shows that fragility depends on the details of the arrangements

My discussion

- Present a simpler model
 - 3 time periods
 - captures many (but not all) of the features of their model
- Use this model to summarize their results
 - relate them to the existing literature
- Offer some comments

A simple model

- *t* = 0, 1, 2
- mass N of investors with Diamond-Dybvig preferences

$$u(c_1, c_2) = \left\{ \begin{array}{c} u_1(c_1) \\ u_2(c_2) \end{array} \right\} \text{ with prob. } \left\{ \begin{array}{c} \alpha \\ 1-\alpha \end{array} \right\}$$

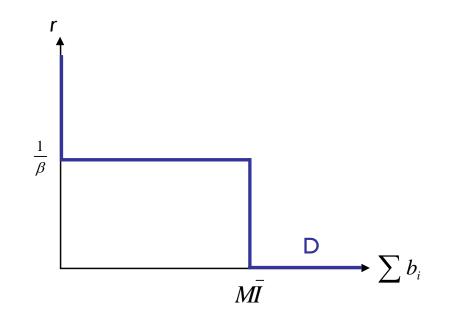
- endowment of 1 at t = 0, none later
- can store good between periods
- N dealers (or "banks") with linear preferences

$$u(c_0, c_1, c_2) = c_0 + \beta c_1 + \beta^2 c_2$$

– large endowment at t = 0

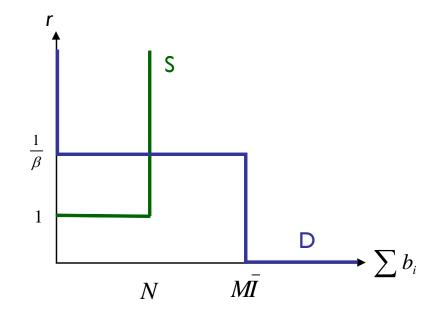
Technologies

• Each dealer has access to an investment technology


- investment at
$$t=0$$
 yields $\left\{ egin{array}{c} 1 \ R>1 \end{array}
ight\}$ at $t=\left\{ egin{array}{c} 1 \ 2 \end{array}
ight\}$

– assume
$$\beta^2 R > 1$$

- maximum scale \overline{I}
- Dealers accept demand deposits from investors
 - offer interest rate r > 1 in *each* period
 - borrow an amount b_i (\sim leverage)


Intermediation

• Dealers' demand for funds:

Intermediation

• Dealers' demand for funds:

- Investors supply funds inelastically
- Equilibrium borrowing Σb_i is determined by supply N

Properties of equilibrium

- Note: individual b_i are indeterminate
 - each dealer is indifferent over a broad range
 - aggregate leverage is pinned down (by the supply of funds)
 - individual leverage can vary across dealers
- Dealers make profit (rents on their fixed-capacity technology)
- \Rightarrow Simple model captures many features of the overlapping-generations model in the paper

Fragility

- Is a dealer susceptible to a self-fulfilling run at t = 1?
- Dealer has: $\frac{assets}{\overline{I}} = \frac{liabilities}{rb_i}$
- Can satisfy withdrawal demand even if all investors withdraw if

 $\overline{I} \ge rb_i$

- Otherwise, baseline bankruptcy rule: assets divided evenly among investors who withdraw early
- Dealer is fragile if and only if this "liquidity constraint" is violated
 - a patient investor who does not join the run receives zero

- Note: in the standard Diamond-Dybvig model, all funds come from depositors
 - the liquidity constraint is always violated
 - the bank is always susceptible to a run
- New here:
 - internal funds (capital, profits) can help a dealer survive a run
 - fragility depends on leverage b_i

- The literature following Diamond-Dybvig has focused on flexibility in the deposit contract (payment schedule)
 - banks don't pay depositors at face value until everything is gone
 - suspension, rescheduling, etc. \rightarrow state-contingent payoffs
- Question: are banks fragile when the deposit contract is endogenous?
 - answer depends on features of environment, esp. commitment
- The approach here is similar in spirit
 - examine fragility under specific institutional arrangements

Tri-party repo with "unwind"

- At t = 1, dealer borrows funds and repays all investors
- Asks investors if they want to reinvest until t = 2
 - offers unmatured investment as collateral
 - uses redeposited money to pay off intraday loan
- If insufficient funds are redeposited, dealer fails
 - note: happens only if liquidity constraint is violated
 - in this event, agents who did redeposit keep their collateral
 - investors discount value of collateral by $\gamma < 1$

- Key issue: payoffs available to a patient investor who expects a run
 - does not redeposit: r

– redeposits: $\gamma R \kappa_i$

• Introduces a "collateral constraint"

 $\gamma R \kappa_i \geq r$

- dealer is fragile if this condition and liquidity constraint are violated
- \Rightarrow Improvement over the baseline arrangement, but still fragile

Tri-party repo with no unwind

- Now suppose dealer asks "Who wants to roll over their repo loan?"
 - if sufficiently many agree, the dealer continues
 - otherwise, liquidate dealer, divide funds evenly among investors
- An investor's payoff is now independent of his choice if others run
 - receives an even share of the collateral, regardless of his answer
 - no (strict) incentive to run
- Key feature: no way for an investor to "get out first"
- \Rightarrow This arrangement is stable (not fragile)

• Paper applies same methodology to other arrangements

- bilateral repos, money market mutual funds, etc.

- Main point: the institutional arrangements generates a game
 - some games admit bad equilibria (fragility), others do not

Comments

- This is an interesting and worthwhile exercise
 - we observe different types of financial arrangements, some have appeared to be more robust than others
 - need a framework for understanding why
- My comments will focus on policy implications

(1) Why does this unwind arrangement exist?

- In the model, it is a clearly inferior arrangement

• Possible answers:

- historical accident (perhaps combined with laziness)

- it serves some useful purpose that is missing from the model
- Answer may not matter for a positive analysis of fragility ...but is clearly important for thinking about policy implications

- is there scope for welfare-improving regulation? If so, what?

- would want to be explicit about the source of market failure

- (2) Capital requirements and leverage ratios
 - First thought: regulation of b_i would be very useful
 - dealers are indifferent over a wide range
 - a cap on b_i might costlessly eliminate fragility of high-leverage dealers
 - But .. if dealers anticipate a possible run, they will not be indifferent
 - The model treats a run as an unexpected shock
 - makes normative analysis of ex ante regulation difficult
 - Could you add a probability q > 0 of a run?

Summary

- Interesting paper
- Current approach focuses on positive analysis of fragility
- What can be done in terms of normative analysis?
 - there are a lot of interesting policy questions
 - here, or in future work