DISCUSSION OF

How Should Central Banks Steer Money Market Interest Rates?

by Francesco Papadia

Todd Keister Rutgers University

SIPA/FRBNY Workshop on Implementing Monetary Policy May 4, 2016

Steering interest rates

- Francesco's presentation nicely lays out:
 - the standard pre-crisis framework
 - the present (non-standard) situation
 - an interesting proposal for using derivative contracts to improve interest rate control
- I want to bring in another element into the discussion: liquidity regulation
 - creates some complications any operational framework will have to deal with
 - reminds us of the interaction between the operational framework and other objectives, including financial stability
 - may point to another advantage of the derivatives approach

Emphasize:

- The question of how to best steer interest rates is not merely a technical matter
- The implementation framework is inherently connected to:
 - fiscal policy, through the central bank's balance sheet
 - financial stability policy
- Determining how to balance these concerns is difficult
 - but seeing the potential conflicts and tradeoffs in a specific context is (hopefully) useful

 Start with Francesco's "fundamental equation" for the equilibrium interest rate on interbank loans

 $r^* = \text{prob}[\text{reserve surplus}]r_{IOER} + \text{prob}[\text{reserve deficit}]r_{DW}$ where:

- r_{IOER} = interest rate paid on excess reserves
- r_{DW} = interest rate at the CB's discount window

• Rewriting:

 $r^* = r_{IOER} + \text{prob}[\text{reserve deficiency}](r_{DW} - r_{IOER})$ depends on the supply of reserves $r^* = r_{IOER} + p(R)$ "scarcity value" of reserves

or

- Implementation: use R (and other tools) to change p(R)
 - corridor system: aim for a particular p(R) > 0
 - floor system: aim for $p(R) \approx 0$

Other interest rates

• For loans with longer maturity, more risk, etc.:

$$r_j^* = r^* + s_j$$

- think of spread s_j as (roughly) independent of r_{IOER} and R
- includes expectations of future interest rates, etc.
- Key point:

$$r_j^* = r_{IOER} + p(R) + s_j$$

by changing r_{IOER} and/or p(R), CB moves all interest rates up/down

Liquidity regulation

- What changes with the Basel III liquidity requirements?
- Focus on the Liquidity Coverage Ratio (LCR) ...
 - banks must satisfy:

 $LCR = \frac{\text{High Quality Liquid Assets}}{\text{Net Cash Outflows over 30 days}} \geq 1$

- ... and on two categories of interbank loans
 - overnight and term (> 30 days)
- Looking at <u>excess LCR liquidity</u> (that is, HQLA NCOF):
 - overnight borrowing/lending has no effect
 - term borrowing raises it (and term lending lowers it)

• Overnight interest rate is unchanged as a function of *R*

 $r^* = r_{IOER} + p(R)$ scarcity value of reserves

• But term interest rates have a new component

$$r_T^* = r^* + s_T + \hat{p}(LCR)$$

scarcity value of "LCR liquidity"

- where \hat{p} = value of term borrowing for LCR purposes
- New premium depends on amount of excess LCR liquidity in the banking system
 - affected by fiscal policy, demand for bonds by non-banks, etc.

- Central bank can still move all interest rates up/down
- But ... LCR introduces a new "wedge" in the monetary transmission mechanism
 - this wedge could potentially be large and variable over time
- Q: What should a central bank do about the LCR premium?
 - (1) Simply adjust r^* to offset changes in \hat{p} if desired
 - similar to current approach when s_T changes
 "passive"
 - (2) Manipulate \hat{p} for monetary policy purposes "active"

Potential problems with the passive approach:

- (A) Variability in \hat{p} may present communication problems
 - could require frequent changes in announced target rate
- (B) Steering rates may become more difficult
 - the (near)-zero lower bound on r^* becomes more binding

(C) Large \hat{p} represents an arbitrage opportunity

- shadow banks (or banks not subject to the LCR) could profit by doing very short-term maturity transformation
- note: this activity <u>helps</u> the transmission of monetary policy
 - from that perspective: might want to allow/encourage it
- but raises clear financial stability concerns
- an example of the tension between monetary policy and financial stability

Examples of active approaches

(A) OMOs against non-HQLA assets

- increase supply of reserves without removing govt. bonds
- (B) Term lending to banks (against non-HQLA collateral)
 - like the Term Auction Facility or a term discount window
 - provides reserves to banks without increasing NCOF
- Both approaches will affect excess LCR liquidity
 - \blacktriangleright adding reserves this way should decrease \hat{p}
 - \blacktriangleright similarly, draining reserves should increase \hat{p}
- However ...

- Note: these operations create *reserves*
 - and thus have spillover effects on p(R)
- Depending on timing and other factors, the CB may or may not be able to sterilize these effects
- If effects are not fully sterilized...
 - efforts to affect LCR premium \hat{p} will alter the o/n rate r^*
 - this interaction can be intricate
 - controlling either rate can become much more difficult

Reference: M. Bech and T. Keister "Liquidity Regulation and the Implementation of Monetary Policy," Dec. 2015.

(C) Introduce a term bond-lending facility

- ▶ rather than increasing *R* when banks face an LCR shortfall ...
- offer to lend bonds (against non-HQLA collateral)
 - like the TSLF or the Bank of England's Discount Window
- allows the central bank to change excess LCR liquidity in the banking system without affecting reserves (R)
- Notice the symmetry here:
 - central banks traditionally change R to affect p(R)
 - "to provide an elastic currency"
 - these facilities change LCR liquidity to affect $\hat{p}(LCR)$
 - in this sense \Rightarrow a natural extension of monetary policy

- Discussion suggests some features that might be desirable for the CB's operational framework
 - 1. Floor system: (interest on reserves policy)
 - set r_{IOER} = target rate, set *R* to aim for $p(R) \approx 0$
 - 2. Set *R* (in part) based on payments needs (monetary policy)
 - ▶ assuming a range of values of *R* would deliver $p(R) \approx 0$
 - 3. And a bond-lending facility (credit policy?)
 shift composition of CB's assets to aim for a low, stable p̂
- This framework neatly separates policy objectives
 - and provides distinct tools to address distinct objectives

Some (difficult) questions

(1) Should a central bank aim to influence \hat{p} ?

- strengthens the transmission of monetary policy
- but raises a number of important issues (as we have heard)

(2) If so, how?

- aim to actively manage \hat{p} ? Or only provide a cap?
- (3) Does having the central bank "produce" LCR liquidity undermine the goals of liquidity regulation?
 - what should a CB do if financial stability policy is weakening the transmission channel(s) of monetary policy?

(4) Can using derivatives help manage this tradeoff?