Discussion of:

A Model of a Systemic Bank Run

by Harald Uhlig

Todd Keister Federal Reserve Bank of New York Carnegie-Rochester Conference April 2009

The views expressed herein are my own and do not necessarily reflect those of the Federal Reserve Bank of New York or the Federal Reserve System.

Motivation

- Observers claim that some recent events are "just like" a bank run
 - draw policy conclusions based on this analogy
- We have a canonical model of bank runs
 - Diamond and Dybvig (1983) and many subsequent variations
- However:
 - some critical elements of the common story about recent events are not in the model
 - (there is also some debate about the policy conclusions of the basic model)

• Goal: build a richer version of the Diamond-Dybvig framework

- more directly linked to current events

- use this model to inform current policy debate
- Key shortcomings of standard model:
 - (i) the current crisis is a run by intermediaries, not depositors
- (ii) the crisis also has important *systemic* elements
- I will argue that (ii) is the relevant issue
 - start with the basic Diamond-Dybvig model

The Diamond-Dybvig model

- Continuum of depositors
 - each may be patient or impatient
 - expected utility: $\phi u(c_1) + (1 \phi) u(c_2)$
- Bank divides assets between storage and investment
 - investment yields R > 1 if held to maturity
 - but only yields $q \leq 1$ if liquidated early
- Competition leads bank to maximize E[u] subject to feasibility
- A run equilibrium exists under some conditions

The Diamond-Dybvig model: a "bank-on-bank" run

• Continuum of local banks

- each may have patient or impatient depositors

- expected utility: $\phi u(c_1) + (1 - \phi) u(c_2)$

- Core bank divides assets between storage and investment
 - investment yields R > 1 if held to maturity
 - but only yields $q \leq 1$ if sold to outside investors
- Competition leads core bank to maximize E[u] subject to feasibility
- A run equilibrium exists under some conditions

- ⇒ A "wholesale" run is not very different from a "retail" run (in modeling terms)
 - The paper does more than relabel variables, of course
 - differentiates local bank and its depositors
 - has location-specific risk that generates a role for core banks \Rightarrow true tiering of financial system
 - However, I would argue that is not the main issue/contribution

- I want to focus on systemic effects

The Diamond-Dybvig model: a system-wide run

- It is also easy to model a system-wide bank run
- Suppose there are many core banks
 - each core bank has its own set of local banks/depositors
 - depositors in a core bank run if they observe a negative "sunspot" signal
- Suppose all depositors coordinate on the same signal
 - then a run, when it occurs, will be system wide
 - but ... is this a *systemic* run?

• In the model above, there is no linkage between the core banks

- systemic pprox a run on some banks adversely affects other banks

• One approach: payoff externality in liquidation costs ("fire sale")

- suppose q(L) where L = total assets liquidated with $q'(L) \neq 0$

- Fire sale pricing \Rightarrow high return on assets between t = 1 and t = 2
 - why don't outside investors buy, drive up prices?
 - answering this question is not trivial
 - optimal policy response may depend critically on the answer
- The paper looks at two theories: loss aversion and moral hazard

Loss aversion

- Return R is random and heterogeneous across assets
- Some outside investors are experts who pay fair value
 - fixed mass of these investors
- All other outside investors are loss averse
 - willing to pay the value of the asset in the worst state
- As L increases, larger fraction of sales goes to loss averse investor
 - a run on some bank lowers average sale price; q'(L) < 0
 - this makes other banks more susceptible to a run

Moral hazard

- Classic lemons problem
 - banks know value of their assets, outside investors do not
 - banks would like to unload worst assets
- When depositors run, bank is forced to sell all assets
- Forced sales improve average quality of assets sold
 - a run on some banks raises the sale price; q'(L) > 0
 - this makes other banks less susceptible to a run
 - runs counter to common view of current events

Comments: (1) policy implications

- Conclusion: trust the policy implications of the loss-aversion model
- Paper offers some preliminary thoughts on what these implications might be
 - govt purchases of assets at above-market prices: good
 - offers taxpayers a high expected return
- But ... what if taxpayers are loss averse?
- Paper is careful not to make welfare statements
 - but ... we would like to be able to evaluate policy proposals in terms of welfare

(2) Theories of q(L)

- The paper considers two specific theories of q(L)
 - many other possibilities; how sensitive are results?
- Will any model with q'(L) < 0 lead to same policy recommendation?

- probably not

- How can we judge whether the loss aversion theory is really useful?
 - personally, I would prefer a theory that does not rely on "funny" preferences
- What other tests should a model pass before I trust its recommendation?

(3) Multiplicity

- The model has multiple equilibria
 - a "fundamental" run and a self-fulfilling run
- Do the policy conclusions of the model vary across equilibria?
 - seems possible (perhaps even likely)
- If so, how can we determine which is the relevant one?

(4) Probability of a crisis

- Paper views the current situation as triggered by an unlikely shock
 - ex ante probability of a bust \approx 0, or ...
 - bust state was "irrationally ignored" when contracts were signed
- What if the bust state was *rationally* ignored?
 - agents anticipate government intervention following some event(s), make contractual arrangements accordingly
 - these arrangements can make the event more likely to occur (Ennis and Keister, 2008a,b)
- Do the ex post policy prescriptions depend on the cause of the crisis?
 - perhaps not, but seems worth thinking about

Summary

- Paper addresses an important issue
 - builds a model that can be used for policy evaluation
 - designed to match some features of the current crisis
- Exercise requires one to be explicit about the forces at work
 - "fire sale" story is very common, but ...
 - surprisingly difficult to fit into a standard model
- Results so far are interesting, but more could be done
 - real payoff is a more detailed evaluation of policy proposals