Discussion of:

Dynamic Runs and Optimal Termination

by Hongda Zhong and Zhen Zhou

Todd Keister Rutgers University

European Finance Association Annual Meeting August 20, 2020 Q: How do bankruptcy rules affect the timing of a debt run?

- For this discussion, I want to focus on one type of firm: banks
 - which may be resolved outside of the bankruptcy code (orderly liquidation, or disorderly policy reactions)
 - will ask later: is this focus appropriate?

Q: How does the resolution process for a failed bank affect the timing of the run on the bank?

Many small depositors in a bank

Initially:

Bank is solvent

Assets		Liabilities		
Investment	(1 + g)	Deposits	(1+g)	
		Equity	(1 + g)	Equity > 0

- Deposits pay interest at rate g
 - depositors reinvest the interest \rightarrow liabilities grow at rate g
- ► Value of assets also increases over time at rate *g*

 \Rightarrow value of equity grows at this same rate $\left(\frac{\text{equity}}{\text{assets}}\right)$ is constant

- At some point, a negative shock hits
 - growth rate of value of bank's assets falls

Asset	S	Liabilities		
Investment	(1+g)	Deposits	(1+g)	
	(1 + g')	Equity	(1+g)	,

- At this moment, the bank is still solvent
- Over time:
 - deposit liabilities grow faster than value of assets
 - value of equity is decreasing over time
 - ventually the bank will be insolvent (equity < 0)</p>
- If a bank is insolvent, depositors will run. But ... when?

Depositors receive news dispersed in time

- not sure when the shock hit, or when insolvency will occur
- and not sure how many other depositors know about the shock
- Each depositor wants:
 - (*i*) to stay invested as long as possible (to collect the interest) <u>and</u>
 - (*ii*) to get out before the bank fails
- A depositor knows waiting is risky. Needs to think about:
 - the benefit of staying invested a bit longer (interest)
 - the cost if they don't get out in time
 ... which depends critically on how the bank will be resolved

A motivating example

- Think about Lehman Brothers in the summer of 2008
 - in March 2008, Bear Stearns is sold to JPM Chase
 - general understanding that Lehman is "next in line"
- Puzzle: why didn't creditors run from Lehman right away?
 - they were receiving value from the relationship (~interest)
 - and did not know when/if Lehman would fail (come back to this point)
 - wanted to "ride the wave"
- Key element of their decision process:
 - what would happen if Lehman failed and they were still invested?
 - that is, what would they receive in resolution?
 - many elements: how many other investors have already withdrawn, bankruptcy law, anticipated govt intervention, etc.

- Paper focuses on two particular features of resolution
- Q: What is the optimal length of the <u>clawback window</u>?
 - period before failure for which withdrawals are undone
- Q: What is the optimal <u>resolution trigger</u>?
 - that is, at what point should bank be put into resolution?

Outline of my comments:

- What I like about the model
- Four questions
- Final thoughts

What I like about the model

- Paper studies an important policy question
 - how should resolution procedures be designed?
- ... focusing on a key element:
 - resolution policy affects investors' withdrawal decisions
 - and therefore how a failure/crisis plays out
 - importantly: captures key features of the Lehman episode
- Results are very clean, intuitive
- Methodology generates interesting insights
 - example: increasing clawback window has two competing effects
 - \blacktriangleright improves payoffs in bankruptcy \rightarrow more willing to wait
 - \blacktriangleright but shortens opportunity to get out \rightarrow want to withdraw sooner

Q1) Why short-term debt?

- Paper follows the tradition of assuming realistic contracts
 - even if they are not well suited to the model environment
- In this model, there is no value to having short-term debt
 - best arrangement: long term debt or 100% equity (\rightarrow no run)
- In practice, presumably there are reason(s) for these contracts
- Q: Does abstracting from these reason(s) affect the conclusions?
 - in one respect: answer is clearly `yes'
 - optimal policy here is a "full" clawback window
 - a way of replicating long-term debt
 - > authors rule out this particular policy, but ... I still have concerns

- One reason for demandable debt: liquidity shocks (Diamond and Dybvig, 1983)
 - think of a corporate treasurer holding funds in a bank or MMMF
 - withdraws to meet payroll, or to complete a large purchase
- In this case, clawbacks can be very costly
 - the money has already been spent; how can this be undone?
- May also change the optimal termination point k
 - especially if funds will be tied up for some time in bankruptcy
- Another reason: demandable debit disciplines firm behavior (Calomiris and Kahn, 1991)
 - threat of withdrawal may prevent banker from misbehaving
 - if withdrawals will be clawed back, what happens to incentives?

Same issue came up early in the Diamond-Dybvig literature

- DD (1983): "deposit insurance" was essentially a clawback clause on all early withdrawals
- Wallace (1988): clawback is inconsistent with the idea that demand deposits provide liquidity insurance
- lead to a literature on "taking sequential service seriously"
- Q: Could DD-style liquidity shocks be introduced here?
 - \blacktriangleright at each point in time, a fraction π of depositors are `impatient'
 - Iarge payoff from withdrawing/consuming immediately
 - replaced by an inflow of new depositors of same size
 - might not change the model structure much
- How would it affect the policy conclusions?

Q2) Certain death?

- The bank/firm in the model is doomed to fail
- Policy objective: keep it alive as long as possible ...
 - because it is creating value in the meantime
- Let's think about this in the context of the Lehman example
- Suppose everyone knew Lehman was going to fail eventually
- Would the policy objective have been to delay the inevitable?
 - because some hedge funds had good terms with Lehman?
 - I don't know ...
- Policy makers wanted to prevent current failure ...
 - with the hope it would recover

Q: Could the model be modified to allow recovery?

- Perhaps g follows a two-state Markov process
 - asset value will eventually recover
 - but uncertain if recovery will be before bank becomes insolvent
- Then: policies that *delay* a run (increase τ^*) ...
- ... increase the chance of *avoiding* a run altogether
- I don't know if this is technically feasible
- If so, how would the policy prescriptions differ?

Q3) Are these banks?

Q: Are banks a good application of the firms in this model?

- Paper aims to be agnostic about the firm
 - could be a bank or a non-financial firm issuing debt
- But many argue that banks are *special*
 - particularly in their (demandable) liabilities
- The context we apply to a model often matters
 - for evaluating assumptions and interpreting results
- Is my motivating example (Lehman) a good one?
- If not, what is a good motivating example?
 - what is the best context for evaluating the analysis?

Q4) Resolution more generally?

If the model is about banks ...

Q: Can we study other elements of resolution process?

- Examples:
 - impose withdrawal fees when a trigger k is met
 - impose (temporary) deposit freeze when a trigger is met
 - deposit insurance or bailouts
 - allow partial withdrawals and subordinate remaining amount ("minimum balance at risk" proposal)
 - related to the reform of Money Market Mutual Funds in U.S.
- Framework here seems like a promising way to evaluate these policies

Final thoughts

- This is an interesting paper studying an important issue
 - much policy discussion of how to design better bankruptcy/ resolution rules
 - need good theory to guide this discussion
- The paper offers some interesting insights
 - competing effects of lengthening clawback window
 - how features of environment determine the optimal policy m^*
- It seems like much more could be done with this framework
 - my (biased) view: modify model to focus more directly on banks
 - and look at resolution policy more generally
 - perhaps there is another paper to be written ...