Bailouts and Financial Fragility

Todd Keister

Rutgers University

September 2013

The question

- Bailing out financial institutions creates moral hazard
 - distorts ex ante incentives; increases financial fragility
- Q: How should policy makers deal with this issue?
 - One view: focus should be on limiting/eliminating future bailouts

Phillip Swagel: "A resolution regime that provides certainty against bailouts will reduce the riskiness of markets and thus help avoid a future crisis."

 \rightarrow limiting bailouts is an effective way to promote financial stability

- Implementing such a policy may be difficult, of course, but many reform efforts clearly reflect this view
 - Dodd-Frank: "An Act to promote financial stability ... [and] to protect the American taxpayer by ending bailouts."

Q: If feasible, would a strict no-bailouts policy be *desirable*?

- would it increase financial stability?
- would it raise welfare?
- Analyze this question in a version of the Diamond-Dybvig model
 - add fiscal policy and limited commitment

Results

- A no-bailouts policy does change incentives
 - financial intermediaries become more liquid (more "cautious")
- But ... it is not necessarily desirable
 - may lower welfare (intermediaries become too cautious)
 - and *increase* financial fragility (investors become more nervous)
- A tax on short-term liabilities with no restriction on bailouts:
 - generates higher welfare than either of these regimes
 - always reduces financial fragility
- ⇒ Best outcome requires allowing bailouts and using prudential policy

Literature

- Growing literature on bailouts and time consistency issues
 - Gale and Vives (2002), Chari and Kehoe (2009), Farhi and Tirole (2012), Bianchi (2012), others
- One approach: consider a setting in which incentive efficiency requires the ex post allocation of resources to be inefficient
 - a "bailout" aims to improve the ex post allocation, but undermines ex ante incentives
 - a no-bailout commitment would solve the problem
- Here: bailouts are a socially-desirable insurance arrangement
 - also affect fragility via the incentive for investors to withdraw early

Outline

- The model environment
- Equilibrium allocations and financial fragility with:

(1) Bailouts

- (2) A no-bailouts policy
- (3) Taxing short-term liabilities (bailouts with prudential policy)
- Concluding remarks

Preferences

- 3 time periods, t = 0, 1, 2
- Continuum of investors, $i \in [0, 1]$

- utility

$$u\left(c_{1i}+\omega_{i}c_{2i}
ight)+v\left(g
ight)$$
 u is CRRA, with $\gamma>1$

where
$$\omega_i = \left\{ \begin{array}{c} 0\\ 1 \end{array} \right\}$$
 if investor is $\left\{ \begin{array}{c} \text{impatient}\\ \text{patient} \end{array} \right\}$

– c_{ti} is private consumption, g is a public good

- Type is revealed at t = 1; private information
 - π = probability of being impatient for each investor

Technologies

• Investors have endowments at t = 0

• Goods invested at
$$t = 0$$
 yield $\left\{ \begin{array}{c} 1 \\ R > 1 \end{array} \right\}$ at $t = \left\{ \begin{array}{c} 1 \\ 2 \end{array} \right\}$

- usual incentive to pool resources for insurance purposes

- Public good can be created using private goods as inputs at t = 1
 - one unit of private good creates one unit of public good (for simplicity)
- Policy maker can tax deposits at t = 0
 - invests funds until t = 1, then produces public good ... or makes transfers

Intermediation

- Investors pool funds at t = 0, withdraw in either t = 1 or t = 2
 - can interpret as a bank, other financial intermediary, etc.
 - withdrawals at t = 1 subject to sequential service (Wallace, 1988)
 - investors arrive in the order given by their index i
- Intermediaries' objective is to maximize investors' expected utility
 - cannot commit to future actions (as in Ennis & Keister, 2009)
- No restrictions on contracts
 - financial arrangements are optimal given the constraints imposed by the environment (as in Green & Lin, 2003, others)

Crises

- A crisis occurs if some patient investors withdraw at t = 1
 - a "run" on the financial system
- Investors may condition actions on an extrinsic "sunspot" variable

– $s \in \{a, b\}$; represents investor sentiment

- s is observed by intermediaries and policy maker with a lag
 - after θ withdrawals have taken place (with $0 \le \theta \le \pi$)
 - re-optimize to utilize remaining resources efficiently (so $\theta \approx$ how quickly authorities react to a crisis)

Timeline

Outline

- The model environment
- Equilibrium allocations and financial fragility with:

(1) Bailouts

- (2) A no-bailouts policy
- (3) Taxing short-term liabilities (bailouts with prudential policy)
- Concluding remarks

(1) Equilibrium with bailouts

- Study equilibria of the game in which:
 - each investor chooses a withdrawal strategy
 - intermediaries choose a payment schedule
 - policy maker chooses a tax rate and a bailout policy
- There is always an equilibrium in which investors do not run
 - first-best allocation of resources obtains
- Q: Is there also an equilibrium where investors run in some state?
 - if so, the financial system is *fragile*

• Suppose investors with $i \leq \theta$ choose to run in state b

– one can show that investors with $i > \theta$ never run

• The intermediary's best response entails:

• This behavior will be an equilibrium if $c_{2b} \leq c_1$

 \Rightarrow financial system is fragile when c_{2b} is small and/or c_1 is large

Determining c_{2b}

• After θ withdrawals, an intermediary has (per investor)

$$1 - \tau - \theta c_1 + b_s$$

- allocates this efficiently among remaining investors: (c_{1s}, c_{2s})
- In crisis state, bailout payments will be chosen so that

$$u'\left(c_{1b}^{\ j}\right) = Ru'\left(c_{2b}^{\ j}\right) = v'\left(g_b\right)$$
 for all j

- bailout policy equalizes consumption across remaining investors
- \Rightarrow an intermediary with fewer resources receives a larger bailout
 - consumption levels (c_{1b}, c_{2b}) depend on *aggregate* conditions (not on an intermediary's own choices)

Determining c_1

• Intermediary's best response: choose c_1 to maximize

$$\theta u(c_1) + (1-q) V_a (1-\tau - \theta c_1) + q V_b$$

- no incentive to provision for the run state

 \Rightarrow set c_1 higher (or, choose larger short-term liabilities)

- when q is larger, incentives become more distorted

Measuring financial fragility

- Let Φ^B = set of economies that are fragile (i.e., have $c_{2b} \leq c_1$)
 - compare the size of this set across policy regimes

The set Φ^B

Outline

- The model environment
- Equilibrium allocations and financial fragility with:
 - (1) Bailouts
 - (2) A no-bailouts policy
 - (3) Taxing short-term liabilities (bailouts with prudential policy)
- Concluding remarks

(2) Equilibrium with a no-bailouts policy

- Suppose policy maker must set b = 0 in all states
- Intermediaries will now choose c_1 to maximize

$$\theta u(c_1) + (1-q) V_a (1-\tau - \theta c_1) + q V_b (1-\tau - \theta c_1)$$

Result: intermediaries are more liquid ...

• Define the degree of illiquidity to be

$$\rho \equiv \frac{c_1}{1-\tau}$$

pprox ratio of short-term liabilities to assets

• Proposition: For any q > 0, we have $\rho^{NB} < \rho^B$

- ... but may be *more* fragile
 - Proposition: some economies are in Φ^{NB} , but not Φ^{B}

Intuition: two competing effects are at work

(1) A no-bailout policy makes intermediaries more liquid (\sim lower c_1) \Rightarrow tends to reduce fragility

- (2) But increases the loss from staying invested in a crisis (\sim lower c_{2b})
 - increases the incentive for investors to withdraw early

 \Rightarrow tends to increase fragility

Graphically

-20-

Welfare

- Consider an economy in both Φ^B and Φ^{NB}
 - a no-bailout policy can either raise or lower welfare
- Proposition: If q is small, $e \in \Phi^B$ implies both $e \in \Phi^{NB}$ and $W^B > W^{NB}$

- no-bailout policy lowers welfare, does not help with fragility

Takeaway: In many cases, a no-bailout policy is undesirable

Outline

- The model environment
- Equilibrium allocations and financial fragility with:

(1) Bailouts

- (2) A no-bailouts policy
- (3) Taxing short-term liabilities (bailouts with prudential policy)
- Concluding remarks

(4) Taxing short-term liabilities

- Now suppose the policy maker imposes a tax on intermediaries' short-term liabilities
 - an intermediary pays ηc_1 to govt for each of first θ withdrawals
 - no restrictions on bailout policy
- Policy maker chooses η to maximize investors' expected utility
 - no commitment: η is determined as withdrawals occur
- Intermediaries will then choose c_1 to maximize

$$heta u(c_1) + (1-q) V_a (1-\tau - (\theta+\eta) c_1 + N) + q V_b$$

Results

- Proposition: $\rho^{NB} < \rho^* < \rho^B$
 - policy reduces illiquidity relative to bailouts alone
 - but not as much as the no-bailouts policy
- Proposition: $\Phi^* \subset \Phi^B$ and $\Phi^* \subset \Phi^{NB}$
 - policy reduces fragility relative to either of the other regimes
 - effective macroprudential policy

Intution:

- Pigouvian tax lowers c_1 (\Rightarrow withdrawing early less attractive)
- Allowing bailouts increases c_{2b} (\Rightarrow waiting more attractive)

Graphically:

-25-

Welfare

Proposition: $W^* > W^B$ and $W^* > W^{NB}$

Intution:

- Under a no-bailouts policy, intermediaries become too liquid
 - must completely self-insure against the bad state
- Bailouts provide socially-valuable insurance
 - encourages socially-desirable maturity transformation

 $\rightarrow \ \rho^* > \rho^{NB}$

• Incentive distortion is corrected by the Pigouvian tax

 $\rightarrow \rho^* < \rho^B$

Concluding remarks

- I have presented an environment where:
 - bailouts are part of a socially-desirable insurance arrangement
 - the anticipation of bailouts distorts incentives, increases fragility
 - investors are more prone to run when potential losses are larger
- Note: all of these features arise naturally in a fairly standard model
 - each captures important features of recent events
- Implication: a policy combining bailouts with prudential policy is strictly better than:
 - (i) bailouts alone, or
 - (*ii*) a no-bailouts policy

... but suppose effective prudential policy is difficult/infeasible

Recall: "A resolution regime that provides certainty against bailouts will reduce the riskiness of markets and thus help avoid a future crisis."

- The model highlights two important forces. Eliminating bailouts:
 - leads to an underprovision of financial services
 - makes investors more prone to run
 - \Rightarrow a no-bailouts policy may increase fragility, lower welfare
- Argues for a shift in policy focus
 - less emphasis on committing to be "tough" in times of crisis
 - more on developing (prudential) policy tools to correct distortions

Caveats

- Some important features of reality are missing, of course
 - distributional issues (and public finance issues more generally)
 - rent-seeking behavior, political motivations in bailouts
- Limits on policy makers' ability to reallocate may well be desirable
- But ... the main message remains
 - restrictions on bailouts do not necessarily promote efficiency or financial stability
 - efficient bailouts with prudential regulation promote both

Extra stuff

The first-best allocation

• A standard Diamond-Dybvig environment ...

... combined with a simple public-finance problem

Shocks and amplification

• Suppose π is random: $\pi_a < \pi_b$. Then a crisis has two components:

(*i*) more impatient investors (real shock)

(ii) patient investors try to withdraw early (amplification)

- Amplification was clearly important during the financial crisis
- Bernanke (2010; testimony to Financial Crisis Inquiry Commission)

[P]rospective subprime losses were clearly not large enough on their own to account for the magnitude of the crisis. . . . Rather, the [financial] system's vulnerabilities . . . were the principal explanations of why the crisis was so severe and had such devastating effects on the broader economy.

- focus here is on one aspect of these vulnerabilities

The role of the public sector

- A bailout policy in this model has two elements
 - (i) transfer of funds from public to private sector
 - (ii) distribution of funds across intermediaries (chosen ex post)
- Consider a model without (i), i.e. suppose $v(g) \equiv 0$ and $\tau = 0$
 - "bailout" = intervention to equate $\left(c_{1b}^{\ j}, c_{2b}^{\ j}\right)$ across j
 - similar to Chari & Kehoe (2009), Farhi and Tirole (2012)
 - \Rightarrow result: a no-bailout commitment is desirable
- Key idea: a bailout here is part of an efficient insurance arrangement (as in Bianchi [2012])
 - but .. it introduces a distortion in ex ante incentives