BANKING AND FINANCIAL FRAGILITY

A Baseline Model: Diamond and Dybvig (1983)

Professor Todd Keister Rutgers University

May 2017

- Want to develop a model to help us understand:
 - why banks and other financial institutions tend to have a maturity mismatch between their assets and liabilities
 - in what way(s) this maturity mismatch can create the type of financial crises we see in reality
- ...and use this model to evaluate policy proposals
- Our model will be very simple in some dimensions
 - but we will get a remarkable amount of mileage out of it
- Readings:
 - Diamond & Dybvig (JPE, 1983)
 - Allen & Gale, chapter 3

- 1. The Environment
- 2. Autarky
- 3. The Efficient Allocation
- 4. Banking
- 5. Two Views of Financial Fragility

6. Summary

1. The Environment

1.1 Time and commodities

- 3 time periods
 - ▶ *t* = 0, 1, 2
- Single consumption good in each period

1.2 Economic agents

- Continuum of investors, $i \in [0,1]$
- Each is endowed with 1 unit of the good at t = 0
 - and nothing at t = 1, 2
- Each has utility function

$$\left\{\begin{array}{l}u(c_1^i)\\u(c_2^i)\end{array}\right\} \text{ if investor } i \text{ is } \left\{\begin{array}{l}type \ 1 \ - \text{"impatient"}\\type \ 2 \ - \text{"patient"}\end{array}\right\}$$

• denote type by $\omega_i \in \Omega = \{1,2\}$

- At t = 0, investor does not know her type
 - learns type at t = 1
 - type is private information

Uncertainty

- Each investor will be impatient with probability $\lambda \in (0,1)$
- λ also = fraction of all investors who will be impatient
 - no aggregate uncertainty here
 - only uncertainty is about *which* investors will be impatient

Consumption plans

• A consumption plan for investor *i* is

$$c^i = \left(c_1^i, c_2^i\right) \in \mathbb{R}^2_+$$

- Two assets for transforming t = 0 goods to later periods
- Storage:

1 unit at
$$\begin{cases} t = 0 \\ t = 1 \end{cases}$$
 yields $\begin{cases} 1 \text{ at } t = 1 \\ 1 \text{ at } t = 2 \end{cases}$

Investment:

1 unit at
$$t = 0$$
 yields $\begin{cases} r < 1 \text{ at } t = 1 \\ R > 1 \text{ at } t = 2 \end{cases}$

- investment can only be started at t = 0
- (1-r) = "liquidation cost"

2. Allocations under Autarky

Suppose there is no trade

- each investor divides her endowment at t = 0 between storage and investment
- consumes the proceeds at either t = 1 or t = 2
- Let x = amount placed into investment
 - (1 x) is placed into storage
- Investor's objective: $\max_{\{x\}} \lambda u(c_1) + (1 \lambda)u(c_2)$
- Feasibility constraints:

$$c_1 = rx + (1 - x) = 1 - (1 - r)x$$

 $c_2 = Rx + (1 - x) = 1 + (R - 1)x$

• Restating the investor's maximization problem:

$$\max_{\{x \in [0,1]\}} \lambda u(c_1) + (1 - \lambda)u(c_2)$$

subject to

$$c_1 = 1 - (1 - r)x$$

$$c_2 = 1 + (R - 1)x$$

3. The (full information) efficient allocation

- An <u>allocation</u> is a list of consumption plans: $\{(c_1^i, c_2^i)\}_{i \in [0,1]}$
- An allocation is <u>symmetric</u> if

$$(c_1^i, c_2^i) = (c_1^j, c_2^j)$$
 for all i, j

- characterized by only two numbers
- Under <u>full information</u>, investors' preference types are observable (to the planner)
- Q: What is the best symmetric allocation the planner can implement under full information?

3.2 Some properties of efficient allocations

- The efficient allocation of resources in this environment requires:
 - no investment should be liquidated at t = 1
 - no storage should be held until t = 2
 - recall that there is no aggregate uncertainty here
- In our notation:

$$\lambda c_1 = 1 - x$$
$$(1 - \lambda)c_2 = Rx$$

• Combining to eliminate *x*:

$$\lambda c_1 + (1 - \lambda)\frac{c_2}{R} = 1$$

Repeating

$$\lambda c_1 + (1 - \lambda)\frac{c_2}{R} = 1$$

3.3 Finding the best symmetric allocation

• The full-information efficient allocation solves

$$\max_{\{c_1,c_2\}} \lambda u(c_1) + (1-\lambda)u(c_2)$$

subject to

$$\lambda c_1 + (1 - \lambda) \frac{c_2}{R} = 1$$
 multiplier = μ

First-order conditions:

$$\lambda u'(c_1) = \lambda \mu$$
$$(1 - \lambda)u'(c_2) = (1 - \lambda)\frac{\mu}{R}$$

or

$$u'(c_1) = Ru'(c_2)$$

Solution:

 (c_1^*, c_2^*) with $c_1^* < c_2^*$

• Depending on the function *u*, we can have

Efficient level of investment:

$$x^* = (1 - \lambda) \frac{c_2^*}{R}$$

or
$$(1-x^*) = \lambda c_1^*$$

• We know (c_1^*, c_2^*) solves:

$$\max_{\{c_1,c_2\}} \lambda u(c_1) + (1-\lambda)u(c_2)$$

subject to
$$\lambda c_1 + (1 - \lambda) \frac{c_2}{R} = 1$$

- Find (c_1^*, c_2^*) for the following utility functions:
 - $u(c) = \ln(c)$ A: $(c_1^*, c_2^*) = (1, R)$
 - u(c) = c (risk neutral) A: $(c_1^*, c_2^*) = (0, \frac{R}{1-\lambda})$

4. Banking

4.1 More on the environment

- Return to the case where types are private information
- Investors can meet at t = 0, but are isolated from each other at t = 1
 - cannot trade with each other
- Each investor can visit a central location at t = 1 before consuming
 - arrive one at a time
 - must consume when they arrive (ice cream on a hot day)
- These assumptions aim to capture transaction needs
 - when a consumption opportunity arises, investors cannot quickly sell illiquid assets

4.2 A banking arrangement

- Suppose a <u>bank</u> opens at t = 0, offers the following deal:
 - deposit at t = 0 ⇒ you can withdraw at either t = 1 or t = 2 (your choice)
- Bank places a fraction x^* of its assets into investment
- Investors who choose t = 1 will receive c_1^*
 - as long as the bank has funds available
- Investors who choose t = 2 will receive an even share of the bank's matured assets
- These rules create a <u>withdrawal game</u>
 - each investor decides when to withdraw
 - > payoffs depend on the choices made by all investors

4.3 Withdrawal strategies

- First: impatient investors will always withdraw at t = 1
 - do not value consumption at t = 2
- ⇒ We only need to determine what an investor will do in the event she is patient
- A withdrawal strategy is:

 $y_i \in \{1,2\}$

- where $y_i = t$ means withdraw in period *t* when patient
- More notation:
 - ▶ $y = {y_i}_{i \in [0,1]}$ is a complete profile of withdrawal strategies
 - y_{-i} = profile of strategies for all investors except *i*

4.4 Best responses

- Suppose an investor anticipates $y_{-i} = 2$
 - that is, all other investors will withdraw at t = 2 when patient
- What is her best response?
 - if she withdraws at t = 1: c_1^*
 - if she withdraws at t = 2: even share of matured investment
 - what is this even share worth?

patient depositors
$$\xrightarrow{Rx^*} \frac{Rx^*}{1-\lambda} = \frac{(1-\lambda)c_2^*}{1-\lambda} = c_2^*$$

• We know $c_2^* > c_1^* \Rightarrow$ best response $y_i = 2$

4.5 Equilibrium

- A <u>Nash equilibrium</u> is a profile of withdrawal strategies y^* such that, for all *i*, y_i^* is a best response to y_{-i}^* .
 - focus on symmetric equilibria in pure strategies

<u>Result 1</u>: There is a Nash equilibrium with $y_i = 2$ for all *i*.

- In this equilibrium:
 - impatient investors withdraw at t = 1, receive c_1^*
 - patient investors withdraw at t = 2, receive c_2^*
 - \Rightarrow implements the (full information) efficient allocation
 - even though types are private information (!)

4.6 Interpretations

- Notice what the bank is doing in this model
 - issuing demand deposits
 - while holding (some) illiquid assets
- Why is this activity socially desirable?
 - because investors face uncertainty about their liquidity needs
 - bank allows all investors to hold liquid claims
- This activity is often called "maturity transformation"
 - emphasize that this a productive activity
 - bank is "producing" liquidity
 - also called "fractional reserve banking"

• Suppose we construct the <u>balance sheet</u> of this bank

Assets	5	Liabilities		
Investment	Rx^*	Deposits	c_1^*	
Storage	$1 - x^{*}$			
		Equity	E	

- note that investment is valued at "hold to maturity" price
- Equity (or "bank capital") is defined as Assets Liabilities

$$E \equiv Rx^* + (1 - x^*) - c_1^*$$

- A bank is said to be <u>solvent</u> if $E \ge 0$
 - by design, our banking arrangement is solvent
 - even though some of the bank's assets are illiquid

5. Two views of financial fragility

- So far: it can be socially useful to have banks doing maturity transformation
 - allows all investors to hold liquid claims
 - while (partially) benefitting from the higher return on illiquid investment
- In practice, maturity transformation appears to be at the center of many financial crises
- What does our model say about the *fragility* of this banking arrangement?
- We can see two views of what happens during a crisis

5.1 Self-fulfilling bank runs

- Q: Does the withdrawal game have other equilibria?
- Suppose investor *i* anticipates:

 $y_{-i} = 1$

- everyone else will "run" and withdraw at first opportunity
- What is her best response?
 - the bank will start liquidating investment ...
 - should she join the run?

More generally:

Find the best response of investor *i* to any profile y_{-i}

For any y_{-i} , define:

 $e(y_{-i}) =$ number of t = 1 withdrawals that will be made by patient investors ("extra" withdrawals at t = 1)

- equals number of investors who have $y_i = 1$ and are patient
- note: $e \in [0, 1 \lambda]$
- To find best response of investor *i*:
 - compare expected payoffs of withdrawing at t = 1 and t = 2
 - both of these payoffs will depend on *e*

- If a patient investor chooses t = 1, she receives $c_1^* \dots$
 - ... if (and only if) bank has funds available when she arrives
- If she chooses t = 2, she receives:
 - > an even share of the bank's remaining (matured) assets
 - critical question: what is this even share worth?
- At t = 2, the bank will have:

• Repeating: the bank will have

$$R\left(x^* - e\frac{c_1^*}{r}\right)$$

- Number of remaining investors: $1 \lambda e$
- An even share is worth:

$$c_{2}(e) = \max \left\{ \frac{R\left(x^{*} - e\frac{c_{1}^{*}}{r}\right)}{1 - \lambda - e}, 0 \right\} \qquad \begin{array}{c} \text{Q: What does} \\ \text{this function} \\ \text{look like?} \end{array} \right\}$$

Note:

$$c_2(0) = \frac{Rx^*}{1-\lambda} = c_2^* \qquad \text{(as before)}$$

Assume

$$c_1^* > 1 - (1 - r)x^*$$
 (A1)

- this condition implies the bank is "illiquid"
 - it cannot afford to give c_1^* to all investors at t = 1
- Then (you can verify):

$$\frac{dc_2(e)}{de} < 0$$

and

$$c_2(e) = 0$$
 for some $e < 1 - \lambda$

and

 $c_2(e)$ is strictly concave on $(0, e^B)$

• Graphically:

Define: e^B ("bankruptcy") so that

 $c_2(e^B)=0$

Summarizing investor *i*'s payoffs:

	$\underline{e} < e^{T}$	$\underline{e^T} < \underline{e} < \underline{e^B}$	$\underline{e} > e^{B}$
t = 1:	c_1^*	c_1^*	c_1^* or 0
t = 2:	$c_2(e) > c_1^*$	$c_2(e) < c_1^*$	0

For any y_{-i} , the best response of investor *i* is:

if
$$e(y_{-i}) \left\{ \stackrel{\leq}{\geq} \right\} e^T$$
, then $y_i = \left\{ \begin{array}{c} 2\\ 1 \end{array} \right\}$

• If $y_{-i} = 1$, then $e(y_{-i}) = 1 - \lambda > e^T$, so ...

 \Rightarrow best response is $y_i = 1$

<u>Result 2</u>: There is also a Nash equilibrium with $y_i = 1$ for all *i*.

- This second equilibrium resembles the bank runs we have seen during financial crises
 - a "panic", but with fully rational investors
 - nothing fundamental is wrong; bank is still solvent
 - the crisis is (simply) a result of self-fulfilling beliefs
- Another look at the balance sheet:

Assets	5	Liabilitie	S
Investment	rx^*	Deposits	c_1^*
Storage	$1 - x^*$		
		Equity	Ê

If assets are valued at liquidation prices, equity becomes

$$\widehat{E} \equiv rx^* + (1 - x^*) - c_1^* < 0$$

hold to maturity prices		liquidation prices					
Assets		Liabilitie	Liabilities		Assets		es
Investment	Rx^*	Deposits	c_1^*	Investment	rx^*	Deposits	c_1^*
Storage	$1 - x^{*}$			Storage	$1 - x^{*}$		
		Equity	Ε			Equity	Ê

- A bank is <u>solvent</u> if $E \ge 0$; otherwise it is <u>insolvent</u> (repeat)
- A bank is <u>liquid</u> if $\hat{E} \ge 0$; otherwise it is <u>illiquid</u> (new)

Results 1 and 2: When a bank is solvent but illiquid, the withdrawal game has (at least) two equilibria:

- $y_i = 2$ for all *i*: implements the planner's allocation (c_1^*, c_2^*)
- $y_i = 1$ for all *i*: a bank run

"self-fulfilling financial fragility"

Properties of the bank-run equilibrium:

Fraction of investors served:

$$q \equiv \frac{\text{total assets}}{\text{amount per investor}} = \frac{1 - (1 - r)x^*}{c_1^*} < 1$$

• Expected utility in the bank-run equilibrium:

$$qu(c_1^*) + (1 - q)u(0) < u(qc_1^* + (1 - q)0)$$

= $u(1 - (1 - r)x^*)$
< $u(1)$
 $\leq u(autarky)$ (!)

Outcome is worse than having no bank at all

5.2 Bad news and bank runs

- Suppose at t = 1 investors learn the return on investment has fallen to $R_L < R$
 - unexpected shock (for simplicity)
 - banking contract (that is, x^*, c_1^*) is already fixed
- An investor who withdraws at t = 2 now receives

$$c_2(e) = \max\left\{\frac{R_L\left(x^* - e\frac{c_1^*}{r}\right)}{1 - \lambda - e}, 0\right\}$$

Focus on:

$$c_2(0) = \frac{R_L x^*}{1 - \lambda}$$

- Consider two possibilities:
 - $R_{L'} < R_L < R$

At $R_{L'}$, withdrawing at t = 1 is a dominant

> \Rightarrow A bank run is the unique Nash equilibrium

- How low must R_L be for withdrawing at t = 1 to become a dominant strategy?
- Start with $c_2(0) = \frac{R_L x^*}{1-\lambda}$ Using $x^* = (1-\lambda)\frac{c_2^*}{R}$, we have $c_2(0) = \frac{R_L}{R}c_2^*$
- Withdrawing at t = 1 is a dominant strategy if:

 $c_2(0) < c_1^*$

or

$$R_L < \frac{c_1^*}{c_2^*} R \equiv \overline{R}_L$$

Another view

Asset	S	Liabilitie	es
Investment	$R_L x^*$	Deposits	c_1^*
Storage	$1 - x^{*}$		
		Equity	E

- "hold to maturity" value of investment has fallen
- equity is now:

$$E = R_L x^* + (1 - x^*) - c_1^*$$

- (Verify:) $R_L < \overline{R}_L \Leftrightarrow E < 0$
 - if the loss is large enough to make the bank insolvent ...
 - ... withdrawing at t = 1 is a dominant strategy

<u>Result 3</u>: If $R_L < \overline{R}_L$, the *unique* Nash equilibrium strategy profile is

 $y_i = 1$ for all *i*.

- If the bank is insolvent, arrangement necessarily collapses
 - if c_1^* is close to c_2^* , the required losses would be very small
- Fraction of investors served in the run:

$$q = \frac{1 - (1 - r)x^*}{c_1^*}$$
 independent of $R_L!$

• Why? Because during a run, all investment is liquidated

same as when the run was based on self-fulfilling beliefs

An example:

- $u(c) = \ln(c)$ \Rightarrow verify: $(c_1^*, c_2^*) = (1, R)$
- ► also: $r = \frac{1}{2}$, $\lambda = \frac{1}{2}$ \Rightarrow verify: $x^* = \frac{1}{2}$
- then (verify) $\overline{R}_L = 1$
- Suppose $R_L = 0.99$
 - it is socially feasible to give all investors (almost) 1 unit
- > The equilibrium allocation gives 1 to a fraction

$$q = \frac{1 - (1 - r)x^*}{c_1^*} = \frac{3}{4}$$

and nothing to the remaining 1/4 (much worse!)

6. Summary

Takeaways from Diamond & Dybvig (1983)

- Maturity transformation is socially useful ...
 - D&D gave us a good model for thinking about where the value comes from
 - banks are in the business of "creating" liquidity
- ... but makes banks fragile
- Two ways of thinking about this fragility
 - a bank that is solvent but illiquid is *susceptible* to a run
 - ▶ a loss of confidence for whatever reason leads to a run
 - a bank that is insolvent will *necessarily* have a run
 - small losses on a bank's assets can have large consequences

References and further reading

Franklin Allen and Douglas Gale (2007) Understanding Financial Crises, Oxford University Press.

see especially Chapters 3 and 5

Diamond, Douglas W. and Phillip H. Dybvig (1983) "<u>Bank Runs, Deposit</u> <u>Insurance, and Liquidity</u>," *Journal of Political Economy* 91: 401-419.

Diamond, Douglas W. (2007) "<u>Banks and Liquidity Creation: A Simple Exposition</u> <u>of the Diamond-Dybvig Model</u>," Federal Reserve Bank of Richmond Economic Quarterly 93: 189-200.