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Objective 

 Want to develop a model to help us understand: 
 why banks and other financial institutions tend to have a 

maturity mismatch between their assets and liabilities 

 in what way(s) this maturity mismatch can create the type 
of financial crises we see in reality 

  …and use this model to evaluate policy proposals 

 Our model will be very simple in some dimensions 
 but we will get a remarkable amount of mileage out of it 

 Readings: 
 Diamond & Dybvig (JPE, 1983) 

 Allen & Gale, chapter 3 
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1. The Environment  
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1.1  Time and commodities 

 

 3 time periods 

 𝑡 = 0, 1, 2 

 

 Single consumption good in each period 
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1.2  Economic agents 

 Continuum of investors, 𝑖 ∈ 0,1  

 Each is endowed with 1 unit of the good at 𝑡 = 0 
 and nothing at 𝑡 = 1, 2 

 Each has utility function 

 𝑢 𝑐1𝑖
|

  𝑢 𝑐2𝑖 𝑎

  if investor 𝑖 is  type 1 − "impatient"|

type 2 − "patient"  

 denote type by 𝜔𝑖 ∈ Ω = 1,2  

 At 𝑡 = 0, investor does not know her type 
 learns type at 𝑡 = 1 

 type is private information 

6 



Uncertainty 

 Each investor will be impatient with probability 𝜆 ∈ 0,1  

 𝜆 also = fraction of all investors who will be impatient 
 no aggregate uncertainty here 

 only uncertainty is about which investors will be impatient 

 

Consumption plans 

 A consumption plan for investor 𝑖 is 

𝑐𝑖 = 𝑐1𝑖 , 𝑐2𝑖 ∈ ℝ+
2  
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1.3  Technologies 

 Two assets for transforming 𝑡 = 0 goods to later periods 

 Storage:  

 1 unit at  𝑡 = 0| 
𝑡 = 1𝑎

  yields   1 at 𝑡 = 1|

1 at 𝑡 = 2|
  

 Investment: 

 1 unit at 𝑡 = 0  yields   𝑟 < 1  at 𝑡 = 1|

𝑅 > 1  at 𝑡 = 2|
  

 investment can only be started at 𝑡 = 0 

 1 − 𝑟 = “liquidation cost” 
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2. Allocations under Autarky 
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 Suppose there is no trade 
 each investor divides her endowment at 𝑡 = 0 between 

storage and investment 

 consumes the proceeds at either 𝑡 = 1 or 𝑡 = 2 

 Let 𝑥 = amount placed into investment 
 1 − 𝑥  is placed into storage 

 Investor’s objective: 

 Feasibility constraints:  
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max
𝑥 |

 𝜆𝜆 𝑐1 + 1 − 𝜆 𝑢 𝑐2  

𝑐1 = 𝑟𝑟 + 1 − 𝑥  =    1 − 1 − 𝑟 𝑥 

𝑐2 = 𝑅𝑅 + 1 − 𝑥  =    1 + 𝑅 − 1 𝑥  



 Restating the investor’s maximization problem: 

max
𝑥∈ 0,1

 𝜆𝜆 𝑐1 + 1 − 𝜆 𝑢 𝑐2  

 subject to 𝑐1 = 1 − 1 − 𝑟 𝑥 

   𝑐2 = 1 + 𝑅 − 1 𝑥  

 

𝑐1 

𝑐2 

1 𝑟 

1 

𝑅 

𝑥 = 0 

𝑥 = 1 best allocation 
under autarky 

Q: Is this allocation 
     Pareto optimal? 
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3. The (full information) 
 efficient allocation 
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3.1 Definitions 

 An allocation is a list of consumption plans: 
𝑐1𝑖 , 𝑐2𝑖 𝑖∈ 0,1  

 An allocation is symmetric if  

𝑐1𝑖 , 𝑐2𝑖 = 𝑐1
𝑗 , 𝑐2

𝑗   for all 𝑖, 𝑗 

 characterized by only two numbers 

 Under full information, investors’ preference types are 
observable (to the planner) 

Q: What is the best symmetric allocation the planner can 
implement under full information? 
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3.2  Some properties of efficient allocations 

 The efficient allocation of resources in this environment 
requires: 
 no investment should be liquidated at 𝑡 = 1 

 no storage should be held until 𝑡 = 2 

 recall that there is no aggregate uncertainty here 

 In our notation: 
𝜆𝑐1 = 1 − 𝑥 

1 − 𝜆 𝑐2 = 𝑅𝑅 

 Combining to eliminate 𝑥: 
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𝜆𝑐1 + 1 − 𝜆
𝑐2
𝑅 = 1 



 Repeating 

𝜆𝑐1 + 1 − 𝜆
𝑐2
𝑅 = 1 

 

𝑐1 

𝑐2 

1 𝑟 

1 

𝑅 
set of feasible 

symmetric 
allocations 

1
𝜆  

𝑅
1 − 𝜆  
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⇒ The planner can do 
better than autarky 

(Why?) 



3.3  Finding the best symmetric allocation 

 The full-information efficient allocation solves 

max
𝑐1,𝑐2

 𝜆𝜆 𝑐1 + 1 − 𝜆 𝑢 𝑐2  

 subject to 𝜆𝑐1 + 1 − 𝜆 𝑐2
𝑅

= 1 

 First-order conditions: 

 
 
 or 
 

 Solution: 
   𝑐1∗, 𝑐2∗   with   𝑐1∗ < 𝑐2∗ 
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𝜆𝑢′ 𝑐1 = 𝜆𝜆 

1 − 𝜆 𝑢′ 𝑐2 = 1 − 𝜆
𝜇
𝑅 

𝑢′ 𝑐1 = 𝑅𝑢′ 𝑐2  

multiplier = 𝜇 



 Depending on the function 𝑢, we can have 

 

 

 

 

 Efficient level of investment: 

𝑥∗ = (1 − 𝜆)
𝑐2∗

𝑅  

  or    1 − 𝑥∗ = 𝜆𝑐1∗ 

𝑐1 

𝑐2 

1 

𝑅 

𝑐1 

𝑐2 

1 

𝑅 

𝑐1 

𝑐2 

1 

𝑅 

45𝑜 45𝑜 45𝑜 

17 



Exercises 

 We know 𝑐1∗, 𝑐2∗  solves: 

max
𝑐1,𝑐2

 𝜆𝜆 𝑐1 + 1 − 𝜆 𝑢 𝑐2  

 subject to 𝜆𝑐1 + 1 − 𝜆 𝑐2
𝑅

= 1 

 Find 𝑐1∗, 𝑐2∗  for the following utility functions: 

 𝑢 𝑐 = ln 𝑐  

 𝑢 𝑐 = 𝑐   (risk neutral) 
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A: 𝑐1∗, 𝑐2∗ = (1,𝑅) 

A: 𝑐1∗, 𝑐2∗ = (0, 𝑅
1−𝜆

) 



4. Banking 

19 



4.1  More on the environment 

 Return to the case where types are private information 

 Investors can meet at 𝑡 = 0, but are isolated from each 
other at 𝑡 = 1 
 cannot trade with each other 

 Each investor can visit a central location at 𝑡 = 1 before 
consuming 
 arrive one at a time 

 must consume when they arrive (ice cream on a hot day) 

 These assumptions aim to capture transaction needs 
 when a consumption opportunity arises, investors cannot 

quickly sell illiquid assets 
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4.2  A banking arrangement 

 Suppose a bank opens at 𝑡 = 0, offers the following deal:  
 deposit at 𝑡 = 0 ⇒  you can withdraw at either 𝑡 = 1 or 𝑡 = 2 

(your choice) 

 Bank places a fraction 𝑥∗ of its assets into investment 

 Investors who choose 𝑡 = 1 will receive 𝑐1∗ 
 as long as the bank has funds available 

 Investors who choose 𝑡 = 2 will receive an even share of 
the bank’s matured assets 

 These rules create a withdrawal game 
 each investor decides when to withdraw 

 payoffs depend on the choices made by all investors 
21 



4.3  Withdrawal strategies 

 First: impatient investors will always withdraw at 𝑡 = 1 
 do not value consumption at 𝑡 = 2 

⇒ We only need to determine what an investor will do          
 in the event she is patient 

 A withdrawal strategy is: 

𝑦𝑖 ∈ 1,2   
 where 𝑦𝑖 = 𝑡 means withdraw in period 𝑡 when patient 

 More notation: 

 𝑦 = 𝑦𝑖 𝑖∈ 0,1    is a complete profile of withdrawal strategies 

 𝑦−𝑖 = profile of strategies for all investors except 𝑖 
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4.4 Best responses 

 Suppose an investor anticipates 𝑦−𝑖 = 2 
 that is, all other investors will withdraw at 𝑡 = 2 when patient 

 What is her best response? 
 if she withdraws at 𝑡 = 1: 𝑐1∗ 

 if she withdraws at 𝑡 = 2: even share of matured investment 

 what is this even share worth? 

 

 We know 𝑐2∗ > 𝑐1∗  ⇒  best response 𝑦𝑖 = 2 
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matured investment 

patient depositors 

𝑅𝑥∗

1 − 𝜆 =
1 − 𝜆 𝑐2∗

1 − 𝜆  = 𝑐2∗ 



4.5  Equilibrium 

 A Nash equilibrium is a profile of withdrawal strategies 
𝑦∗ such that, for all 𝑖, 𝑦𝑖∗ is a best response to 𝑦−𝑖∗ . 
 focus on symmetric equilibria in pure strategies 

Result 1: There is a Nash equilibrium with 
𝑦𝑖 = 2   for all 𝑖. 

 In this equilibrium: 
 impatient investors withdraw at 𝑡 = 1, receive 𝑐1∗ 

 patient investors withdraw at 𝑡 = 2, receive 𝑐2∗ 

⇒ implements the (full information) efficient allocation 

 even though types are private information (!) 
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4.6 Interpretations 

 Notice what the bank is doing in this model 
 issuing demand deposits 

 while holding (some) illiquid assets 

 Why is this activity socially desirable? 
 because investors face uncertainty about their liquidity needs 

 bank allows all investors to hold liquid claims 

 This activity is often called “maturity transformation” 
 emphasize that this a productive activity 

 bank is “producing” liquidity 

 also called “fractional reserve banking” 
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 Suppose we construct the balance sheet of this bank 

 

 

 
 note that investment is valued at “hold to maturity” price 

 Equity (or “bank capital”) is defined as Assets – Liabilities 

𝐸 ≡ 𝑅𝑥∗ + 1 − 𝑥∗ − 𝑐1∗ 

 A bank is said to be solvent if 𝐸 ≥ 0 
 by design, our banking arrangement is solvent 

 even though some of the bank’s assets are illiquid 
26 

Assets Liabilities 

Investment 𝑅𝑥∗  Deposits 𝑐1∗  
Storage 1 − 𝑥∗  

Equity E 



5.  Two views of financial fragility 
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 So far: it can be socially useful to have banks doing 
maturity transformation 
 allows all investors to hold liquid claims 

 while (partially) benefitting from the higher return on 
illiquid investment 

 In practice, maturity transformation appears to be at the 
center of many financial crises 

 What does our model say about the fragility of this 
banking arrangement? 

 We can see two views of what happens during a crisis 
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5.1  Self-fulfilling bank runs 

Q: Does the withdrawal game have other equilibria? 

 Suppose investor 𝑖 anticipates: 

𝑦−𝑖 = 1 
 everyone else will “run” and withdraw at first opportunity 

 What is her best response? 
 the bank will start liquidating investment … 

 should she join the run? 

More generally: 

 Find the best response of investor 𝑖 to any profile 𝑦−𝑖 
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 For any 𝑦−𝑖, define: 

  𝑒 𝑦−𝑖 = number of 𝑡 = 1 withdrawals that  
      will be made by patient investors 
      (“extra” withdrawals at 𝑡 = 1) 

 equals number of investors who have 𝑦𝑖 = 1 and are patient 

 note: 𝑒 ∈ 0,1 − 𝜆  

 To find best response of investor 𝑖: 
 compare expected payoffs of withdrawing at 𝑡 = 1 and 𝑡 = 2 

 both of these payoffs will depend on 𝑒 
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 If a patient investor chooses 𝑡 = 1, she receives 𝑐1∗ … 
 … if (and only if) bank has funds available when she arrives 

 If she chooses 𝑡 = 2, she receives: 
 an even share of the bank’s remaining (matured) assets 

 critical question: what is this even share worth? 

 At 𝑡 = 2, the bank will have: 

 1 − 𝑥∗   −   𝜆𝑐1∗         +      𝑅   𝑥∗  −     𝑒
𝑐1∗

𝑟
 

storage first 𝜆 
withdrawals 

investment 

liquidated for extra  
𝑡 = 1 withdrawals 

= 0 
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 Repeating: the bank will have 

𝑅 𝑥∗ − 𝑒
𝑐1∗

𝑟
 

 Number of remaining investors: 

 An even share is worth: 

𝑐2 𝑒 = max   
𝑅 𝑥∗ − 𝑒 𝑐1

∗

𝑟
1 − 𝜆 − 𝑒

 , 0  

 Note: 

𝑐2 0 =
𝑅𝑥∗

1 − 𝜆
= 

Q: What does 
     this function 
     look like? 
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1 − 𝜆 − 𝑒 

𝑐2∗ (as before) 



 Assume 

   𝑐1∗ > 1 − 1 − 𝑟 𝑥∗                           (A1) 

 this condition implies the bank is “illiquid” 

 it cannot afford to give 𝑐1∗ to all investors at 𝑡 = 1 

 Then (you can verify): 
𝑑𝑐2(𝑒)
𝑑𝑑 < 0 

     and 
𝑐2 𝑒 = 0   for some  𝑒 < 1 − 𝜆 

     and 
𝑐2 𝑒  is strictly concave on (0, 𝑒𝐵) 
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 Graphically: 

 

 

 

 

 

 

 

 

 

𝑒 

𝑐2(𝑒) 

𝑒𝑇 1 − 𝜆 

𝑐2∗ 

𝑐1∗ 

𝑒𝐵 

Define: 𝑒𝑇 (“threshold”) so that 

𝑐2 𝑒𝑇 = 𝑐1∗ 

Define: 𝑒𝐵 (“bankruptcy”) so that 

𝑐2 𝑒𝐵 = 0 
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 Summarizing investor 𝑖’s payoffs: 

 

 

 For any 𝑦−𝑖, the best response of investor 𝑖 is: 

    if  𝑒 𝑦−𝑖   ≤
|

≥|
 𝑒𝑇 , then  𝑦𝑖 =  2|

 1|
 

 If 𝑦−𝑖 = 1, then 𝑒 𝑦−𝑖 = 1 − 𝜆  > 𝑒𝑇, so … 

 ⇒ best response is 𝑦𝑖 = 

Result 2: There is also a Nash equilibrium with 
𝑦𝑖 = 1  for all 𝑖. 

 

𝒆 < 𝒆𝑻 𝒆𝑻 < 𝒆 < 𝒆𝑩 𝒆 > 𝒆𝑩 

𝑡 = 1: 𝑐1∗ 𝑐1∗ 𝑐1∗ or 0 

𝑡 = 2: 𝑐2 𝑒 > 𝑐1∗ 𝑐2 𝑒 < 𝑐1∗ 0 
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 This second equilibrium resembles the bank runs we 
have seen during financial crises 
 a “panic”, but with fully rational investors 

 nothing fundamental is wrong; bank is still solvent 

 the crisis is (simply) a result of self-fulfilling beliefs 

 Another look at the balance sheet: 

 

 

 If assets are valued at liquidation prices, equity becomes 

𝐸� ≡ 𝑟𝑥∗ + 1 − 𝑥∗ − 𝑐1∗ < 0 
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Assets Liabilities 

Investment 𝑟𝑥∗  Deposits 𝑐1∗  
Storage 1 − 𝑥∗  

Equity 𝐸�  



 

 

 

 A bank is solvent if 𝐸 ≥ 0; otherwise it is insolvent 

 A bank is liquid if 𝐸� ≥ 0; otherwise it is illiquid 

Results 1 and 2: When a bank is solvent but illiquid, the 
withdrawal game has (at least) two equilibria: 
 𝑦𝑖 = 2 for all 𝑖: implements the planner’s allocation 𝑐1∗, 𝑐2∗  

 𝑦𝑖 = 1 for all 𝑖: a bank run 
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Assets Liabilities 

Investment 𝑟𝑥∗  Deposits 𝑐1∗  
Storage 1 − 𝑥∗  

Equity 𝐸�  

Assets Liabilities 

Investment 𝑅𝑥∗  Deposits 𝑐1∗  
Storage 1 − 𝑥∗  

Equity 𝐸 

hold to maturity prices liquidation prices 

“self-fulfilling financial fragility” 

(repeat) 

(new) 



Properties of the bank-run equilibrium: 

 Fraction of investors served: 

𝑞 ≡
total assets

amount per investor =
1 − 1 − 𝑟 𝑥∗

𝑐1∗
< 1 

 Expected utility in the bank-run equilibrium: 

𝑞𝑞 𝑐1∗ + 1 − 𝑞 𝑢 0 < 𝑢 𝑞𝑐1∗ + 1 − 𝑞 0  
             = 𝑢 1 − 1 − 𝑟 𝑥∗  

         < 𝑢 1  

           ≤ 𝑢 autarky      ( ! ) 

 Outcome is worse than having no bank at all 

 38 

1 − 1 − 𝑟 𝑥∗ 
𝑐1∗ 

< 1 

𝑞𝑞 𝑐1∗ + 1 − 𝑞 𝑢 0  



5.2  Bad news and bank runs 

 Suppose at 𝑡 = 1 investors learn the return on 
investment has fallen to 𝑅𝐿 < 𝑅 
 unexpected shock (for simplicity) 

 banking contract (that is, 𝑥∗, 𝑐1∗) is already fixed 

 An investor who withdraws at 𝑡 = 2 now receives 

𝑐2 𝑒 = max   
𝑅𝐿 𝑥∗ − 𝑒 𝑐1

∗

𝑟
1 − 𝜆 − 𝑒

 , 0  

 Focus on: 

𝑐2 0 =
𝑅𝐿𝑥∗

1 − 𝜆
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 Consider two possibilities: 
 𝑅𝐿𝐿 < 𝑅𝐿 < 𝑅 

At 𝑅𝐿, there are two 
equilibria, as before 

At 𝑅𝐿𝐿, withdrawing at 
𝑡 = 1 is a dominant 
strategy ! 

⇒ A bank run is the 
    unique Nash equilibrium 
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𝑒 

𝑐2(𝑒) 

𝑒𝑇 1 − 𝜆 

𝑐2∗ 

𝑐1∗ 

𝑒𝐵 𝑒𝐿𝑇 𝑒𝐿′
𝑇 < 0! 



 How low must 𝑅𝐿 be for withdrawing at 𝑡 = 1 to become a 
dominant strategy? 

 Start with                   𝑐2 0 = 𝑅𝐿𝑥∗

1−𝜆
 

 Using                                𝑥∗ = (1 − 𝜆) 𝑐2
∗

𝑅
,   we have 

𝑐2 0 =
𝑅𝐿
𝑅
𝑐2∗ 

 Withdrawing at 𝑡 = 1 is a dominant strategy if: 

𝑐2 0 < 𝑐1∗ 
 or 

𝑅𝐿 <
𝑐1∗

𝑐2∗
𝑅  ≡ 𝑅𝐿 
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 Another view 

 

 

 “hold to maturity” value of investment has fallen 

 equity is now: 
𝐸 = 𝑅𝐿𝑥∗ + 1 − 𝑥∗ − 𝑐1∗ 

 (Verify:) 𝑅𝐿 < 𝑅�𝐿 ⇔  𝐸 < 0 

 if the loss is large enough to make the bank insolvent … 

 … withdrawing at 𝑡 = 1 is a dominant strategy 
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Assets Liabilities 

Investment 𝑅𝐿𝑥∗  Deposits 𝑐1∗  
Storage 1 − 𝑥∗  

Equity E 



Result 3: If  𝑅𝐿 < 𝑅𝐿, the unique Nash equilibrium strategy 
profile is  

𝑦𝑖 = 1   for all 𝑖. 

 If the bank is insolvent, arrangement necessarily collapses 
 if 𝑐1∗ is close to 𝑐2∗, the required losses would be very small 

 Fraction of investors served in the run: 

   𝑞 = 1− 1−𝑟 𝑥∗

𝑐1∗
    independent of 𝑅𝐿! 

 Why?  Because during a run, all investment is liquidated 

 same as when the run was based on self-fulfilling beliefs 
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 An example: 
 𝑢 𝑐 = ln(𝑐)   ⇒   verify: 𝑐1∗, 𝑐2∗ = (1,𝑅) 

 also: 𝑟 = 1
2

, 𝜆 = 1
2
   ⇒   verify: 𝑥∗ = 1

2
  

 then  (verify)  𝑅𝐿 = 1   

 Suppose 𝑅𝐿 = 0.99 
 it is socially feasible to give all investors (almost) 1 unit 

 The equilibrium allocation gives 1 to a fraction 

𝑞 =
1 − 1 − 𝑟 𝑥∗

𝑐1∗
=

3
4
 

 and nothing to the remaining 1/4             (much worse!)    
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6. Summary 
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Takeaways from Diamond & Dybvig (1983) 

 Maturity transformation is socially useful … 
 D&D gave us a good model for thinking about where the 

value comes from 

 banks are in the business of “creating” liquidity 

 … but makes banks fragile 

 Two ways of thinking about this fragility 
 a bank that is solvent but illiquid is susceptible to a run 

 a loss of confidence – for whatever reason – leads to a run 

 a bank that is insolvent will necessarily have a run 

 small losses on a bank’s assets can have large consequences 
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