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Contagion 

 Financial crises often spread very quickly 
 problems may start in one region or one institution 

 but often trigger runs on other (unrelated?) institutions or in 
other regions 

 Why? 

 The Diamond-Dybvig model provides one theory 
 suppose Bank A fails (for whatever reason) 

 if this event causes investors elsewhere to lose confidence in 
their own banks … 

 … they may decide to withdraw … 

 and the belief that the crisis will spread becomes self-fulfilling 
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 According to this view, a crisis may spread … 

 But it also may not spread 
 suppose investors in other banks do not lose confidence 

 Allen & Gale show us how the situation may be worse 
than this view indicates 
 framework is very close to Diamond & Dybvig, but with 

multiple banks 

 under some conditions, a run on one bank must lead to 
runs on the other banks ⇒ “true” contagion 

 Readings: 
 Allen & Gale (JPE, 2000) 

 Allen & Gale book, chapter 10 
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1. The Environment with Two Regions  
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 The same as in our Diamond-Dybvig model, except: 

 There are now two locations: 𝐴,𝐵 
 each with a 0,1  continuum of investors 

 There is uncertainty about the fraction of investors in 
each location who are impatient 

 

 

 

 where 𝜆𝐻 > 𝜆𝐿     and     𝜆 = 𝜆𝐻+𝜆𝐿
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Location 
state 𝐴 𝐵  probability 
𝑠1 𝜆𝐻 𝜆𝐿 1/3 
𝑠2 𝜆𝐿 𝜆𝐻 1/3 
𝑠3 𝜆 𝜆 1/3 
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2. The (full information) 
 efficient allocation 
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2.1  The planner’s problem 

 Suppose a planner could observe investors’ types and 
control resources in both locations 

 Note: there is no aggregate uncertainty about 𝜆 
 uncertainty is about where impatient investors will be located 

 Some properties of any efficient allocation: 
 no investment should be liquidated at 𝑡 = 1 

 no storage should be held until 𝑡 = 2 

 In state 𝑠1, for example: 

𝜆𝐻𝑐1𝐴 𝑠1 + 𝜆𝐿𝑐1𝐵 𝑠1  = 2 1 − 𝑥
1 − 𝜆𝐻 𝑐2𝐴 𝑠1 + 1 − 𝜆𝐿 𝑐2𝐵 𝑠1  = 2𝑅𝑅
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as before 



 Repeating: 
𝜆𝐻𝑐1𝐴 𝑠1 + 𝜆𝐿𝑐1𝐵 𝑠1  = 2 1 − 𝑥

1 − 𝜆𝐻 𝑐2𝐴 𝑠1 + 1 − 𝜆𝐿 𝑐2𝐵 𝑠1  = 2𝑅𝑅
 

 Suppose the planner wants to set 𝑐𝑡𝐴 s = c𝑡𝐵(s) for all 𝑡, 𝑠 
 that is, planner treats investors in both banks equally 

             
𝜆𝐻+𝜆𝐿

2
𝑐1 𝑠1  = 1 − 𝑥

1 − 𝜆𝐻+𝜆𝐿
2

𝑐2 𝑠1  = 𝑅𝑅
 

 So we have 
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𝜆̅𝑐1 = 1 − 𝑥 
1 − 𝜆̅ 𝑐2 = 𝑅𝑅 

⇒ 𝑐1 and 𝑐2 are 
independent of 𝑠 

⇒ 𝜆̅𝑐1 + 1 − 𝜆̅
𝑐2
𝑅 = 1 

as in the baseline model (!) 



 Investors’ expected utility from 𝑐1, 𝑐2 : 
1
3
𝜆𝐻𝑢 𝑐1 + 1 − 𝜆𝐻 𝑢 𝑐2 +

1
3
𝜆𝐿𝑢 𝑐1 + 1 − 𝜆𝐿 𝑢 𝑐2  

+
1
3
𝜆𝑢 𝑐1 + 1 − 𝜆 𝑢 𝑐2  

 Note:                    1
3
𝜆𝐻 + 1

3
𝜆𝐿 + 1

3
𝜆 = 𝜆  

 The planner would then choose 𝑐1, 𝑐2  to solve 

max
𝑐1,𝑐2

𝜆𝑢 𝑐1 + 1 − 𝜆 𝑢 𝑐2  

 subject to 𝜆𝑐1 + 1 − 𝜆 𝑐2
𝑅

= 1 
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solution: 𝑐1∗, 𝑐2∗  



Two key points: 

(a) It is feasible for the planner to give the consumption 
plan 𝑐1∗, 𝑐2∗  to every investor in every state 
 because there is no aggregate uncertainty 

(b) If the planner places equal weight on all investors, then 
𝑐1∗, 𝑐2∗  is the optimal allocation 

more intuition         more details 

In other words: 

 The planner sees one big Diamond-Dybvig economy 
 the regions are not relevant from the planner’s point of view 

 desired allocation of resources is exactly the same as before 
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 The efficient allocation is again summarized by two 
numbers: 

   𝑐1∗, 𝑐2∗   with   𝑐1∗ < 𝑐2∗ 

 Possibilities: 

𝑐1 

𝑐2 

1 

𝑅 

𝑐1 

𝑐2 

1 

𝑅 

𝑐1 

𝑐2 

1 

𝑅 

45𝑜 45𝑜 45𝑜 
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2.2  Regional transfers 

 A key feature of this allocation: 
 the planner must transfer resources across regions 

 Suppose the same portfolio is used in both regions 

       1 − 𝑥 = 𝜆𝑐1∗ 

     𝑥 = 1 − 𝜆 𝑐2∗

𝑅
 

 When a region has 𝜆𝐻 impatient investors, it needs more 
resources at 𝑡 = 1 
 these resources come from storage in the other region, 

where there are only 𝜆𝐿 impatient investors 

 the 𝜆𝐻 region then has extra resources at 𝑡 = 2 
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 At 𝑡 = 1: 

 

 

 

 At 𝑡 = 2: 

state 𝑠1 state 𝑠2 

𝐴 𝐵 𝐴 𝐵 

storage: 𝜆𝑐1∗ 𝜆𝑐1∗ 𝜆𝑐1∗ 𝜆𝑐1∗ 
impatient consumption: 𝜆𝐻𝑐1∗ 𝜆𝐿𝑐1∗ 𝜆𝐿𝑐1∗ 𝜆𝐻𝑐1∗ 

⟵ ⟶ 

transfer of: 𝜆𝐻 − 𝜆 𝑐1∗ 𝜆𝐻 − 𝜆 𝑐1∗ 

state 𝑠1 state 𝑠2 

𝐴 𝐵 𝐴 𝐵 

matured investment: 1 − 𝜆 𝑐2∗ 1 − 𝜆 𝑐2∗ 1 − 𝜆 𝑐2∗ 1 − 𝜆 𝑐2∗ 

patient consumption: (1 − 𝜆𝐻)𝑐2∗ (1 − 𝜆𝐿)𝑐2∗ (1 − 𝜆𝐿)𝑐2∗ (1 − 𝜆𝐻)𝑐2∗ 
⟶ ⟵ 

transfer of: 𝜆𝐻 − 𝜆 𝑐2∗ 𝜆𝐻 − 𝜆 𝑐2∗ 
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 These inter-region transfers are the new element in the 
Allen-Gale model 

 At the aggregate level: everything is the same as before 
 the overall economy is exactly as in Diamond & Dybvig 

 But there is now uncertainty at the regional level 
 result: the efficient allocation requires transferring 

resources across regions in each period 

 How can our banking arrangement generate these 
transfers? 
 need to somehow include them in the rules governing bank 

behavior 
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3. Banking 
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3.1  A banking arrangement 

 Assume one (representative) bank per region 

 Each offers investors the same contract as before … 
 collects deposits at 𝑡 = 0 

 allows investors to choose when they withdraw 

 withdrawals at 𝑡 = 1 are paid 𝑐1∗ as long as funds are available 

 … and invests according to average liquidity demand: 

         1 − 𝑥 = 𝜆𝑐1∗ 

     𝑥 = 1 − 𝜆 𝑐2∗

𝑅
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Interbank deposits: 

 At 𝑡 = 0, Bank 𝐴 deposits an amount 𝑧 in Bank 𝐵 

 … and Bank 𝐵 deposits 𝑧 in Bank 𝐴 

 Interbank deposits have same rules as investor deposits 
 can be withdrawn in either period 

 withdrawing bank receives 𝑧𝑐1∗ at 𝑡 = 1 if funds are available 

 or a z-share of other bank’s assets at 𝑡 = 2 

 Note: total funds available at 𝑡 = 0 in Bank 𝐴: 
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1 + 𝑧 − 𝑧 = 1 



 Assume each bank deposits with the other bank: 

   𝑧 = (𝜆𝐻 − 𝜆)             = 𝜆 − 𝜆𝐿 = 𝜆𝐻−𝜆𝐿
2

 

 To meet withdrawals at 𝑡 = 1, a bank will: 
 first use resources in storage, 

 then withdraw its interbank deposit, 

 then liquidate investment 

“liquidation pecking order” 

 A bank withdraws its interbank deposit if and only if 
𝑡 = 1 withdrawals exceed 𝜆𝑐1∗ 
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 As before, the banking rules create a withdrawal game 

 Players: the investors in both regions 
 banks are non-strategic; they simply follow the specified rules 

 Timing: 
 investors observe state 𝑠 at the very beginning of 𝑡 = 1 

 before choosing a withdrawal strategy 

 We will study the game separately in each state 
 simplifies the notation, with no loss of generality 

 investors observe state 𝑠, then play the withdrawal game 
associated with 𝑠 
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3.2  Strategies 

 As before: impatient investors always withdraw at 𝑡 = 1 
 do not value consumption at 𝑡 = 2 

 A strategy for an investor in Bank 𝑗 is 

𝑦𝑖
𝑗 ∈ {1,2}  

 𝑦𝑖 = 𝑡 means withdraw in period 𝑡 when patient 

 Other notation is similar to before: 

 𝑦 = 𝑦𝑖
𝑗
𝑗∈ 𝐴,𝐵 ,𝑖∈ 0,1

   is a profile of withdrawal strategies 

 𝑦−𝑖 = strategies of all investors (in both banks) except 𝑖 

as before 

21 



 For any 𝑦−𝑖, define: 

  𝑒𝑗 𝑦−𝑖 = number of 𝑡 = 1 withdrawals by  
       patient investors in bank 𝑗 ∈ 𝐴,𝐵  

 as before: 𝑒𝑗 ∈ 0,1 − 𝜆  

 Rather than fully deriving the best-response functions, we 
will look for particular types of equilibria 
 ask whether certain profiles 𝑦 are an equilibrium of the game 
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3.3 Equilibrium 

Q: Is there an equilibrium with 

𝑦𝑖
𝑗 = 2    ∀ 𝑖,∀ 𝑗 ? 

 Suppose 𝑦−𝑖 has this form.   
 then 𝑒𝐴 𝑦−𝑖 = 𝑒𝐵 𝑦−𝑖 = 

 Focus on the payoffs of investor 𝑖 in state 𝑠1 
 withdraws at 𝑡 = 1 ⇒  receives 𝑐1∗ 

 withdraws at 𝑡 = 2 ⇒  receives even share of her bank’s assets 

 What is this even share worth? 
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 In state 𝑠1, Bank A (with 𝜆𝐻) has: 

 

 

 

 

 

 An even share is worth: 

𝑐2,𝐴 𝑒𝐴 = 𝑒𝐵 = 0; 𝑠1 =
1 − 𝜆𝐻 𝑐2∗

1 − 𝜆𝐻
= 𝑐2∗ 

1 − 𝑥∗   +   𝑧𝑐1∗   −   𝜆𝐻 𝑐1∗      +      𝑅𝑥∗   −   𝑧𝑐2∗ 

storage from 
Bank 𝐵 

to 
impatient 
investors 

matured 
investment 

to 
Bank 𝐵 

= 𝜆𝑐1∗ + 𝜆𝐻 − 𝜆 𝑐1∗ − 𝜆𝐻𝑐1∗    +   𝑅 1 − 𝜆
𝑐2∗

𝑅
 − 𝜆𝐻 − 𝜆 𝑐2∗ 

= 0 = 1 − 𝜆𝐻 𝑐2∗ 
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1 − 𝜆𝐻 𝑐2∗ 
1 − 𝜆𝐻 

𝑐2∗ 



 In state 𝑠1, Bank B (with 𝜆𝐿) has: 

 

 

 

 

 

 An even share is worth: 

𝑐2,𝐵 𝑒𝐴 = 𝑒𝐵 = 0; 𝑠1 =
1 − 𝜆𝐿 𝑐2∗

1 − 𝜆𝐿
= 𝑐2∗ 

1 − 𝑥∗   −   𝑧𝑐1∗   −   𝜆𝐿 𝑐1∗      +      𝑅𝑥∗  +   𝑧𝑐2∗ 

storage to 
Bank 𝐴 

to 
impatient 
investors 

matured 
investment 

from 
Bank 𝐴 

= 𝜆𝑐1∗ − 𝜆𝐻 − 𝜆 𝑐1∗ − 𝜆𝐿𝑐1∗    +   𝑅 1 − 𝜆
𝑐2∗

𝑅
+ 𝜆𝐻 − 𝜆 𝑐2∗ 

= 0 = 1 − 𝜆𝐿 𝑐2∗ verify using  
(𝜆𝐻−𝜆) = (𝜆 − 𝜆𝐿) 
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 Best response of an investor in either bank is then 

𝑦𝑖
𝑗 = 2 

Result 1: There is a Nash equilibrium in state 𝑠1 with 

𝑦𝑖
𝑗 = 2   for all 𝑖. 

 Verify: the same result holds in states 𝑠2, 𝑠3 

 Each investor receives consumption plan 𝑐1∗, 𝑐2∗  
 in every state of nature 

 even though state is not known when investment decisions 
are made 
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 Result 1 demonstrates the benefits of interbank deposits 
 allow efficient transfers of storage and investment across 

regions 

 a form of “risk sharing” 

 Similar in spirit to the first result in Diamond & Dybvig  
 showed the benefits of maturity transformation 

 Next question: what can go wrong? 
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4.  Fragility and Contagion 
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 Under assumption (A1), there is an equilibrium where 
investors run on both banks, that is 

𝑦𝑖𝐴 = 1   and   𝑦𝑖𝐵 = 1  for all 𝑖 

 In this equilibrium, both banks withdraw their 
interbank deposit at 𝑡 = 1 

 these deposits then simply cancel out 

 the analysis is exactly the same as in Diamond & Dybvig 

 In this scenario, the run on one bank is not causing the 
other bank to fail 

 why did investors in Bank B lose confidence? 

 perhaps because of the run on Bank A (“simple” contagion) 

 or perhaps for some other reason 
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 Want to see how a problem in one bank affects the other 
 suppose the problem starts in Bank 𝐴 

Q: Is there an equilibrium of this game in which: 
 investors in Bank 𝐴 run, but investors in Bank 𝐵 do not run? 

 If Bank 𝐵 remains solvent,  answer is “yes” 
 we will say there is “no contagion” in this case 

 If the run on Bank 𝐴 makes 𝐵 insolvent, answer is “no”:  
 the only equilibrium with a run on 𝐴 also has a run on 𝐵 

 in this sense, a run on Bank 𝐴 causes a run on Bank 𝐵 

 this is “contagion” in the Allen & Gale sense 
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 Note: with no interbank deposits, answer would be “yes” 
 if there is no relationship between the banks … 

 then the outcome at 𝐴 has no direct implication for 𝐵 

 With interbank deposits … 
 when Bank 𝐴 fails, Bank 𝐵 will lose money on its deposit 

 what are the implications for Bank 𝐵?  (we need to check) 

 To simplify the analysis, assume: 
 𝑢 𝑐 = ln(𝑐)  ⇒   𝑐1∗, 𝑐2∗ = 1,𝑅  

 focus on the withdrawal game in state 𝑠3 

 only serves to make the calculations easier 
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4.1 Calculating payoffs 

 Suppose    𝑦𝑖𝐴 = 1    and    𝑦𝑖𝐵 = 2 

 Then     𝑒𝐴 𝑦−𝑖 = 1 − 𝜆   and    𝑒𝐵 𝑦−𝑖 = 0 

 What is the best response of an investor in each region? 
 does the interbank deposit make joining the run on Bank A 

less attractive? 

 what are the implications of the run on Bank 𝐴 for investors 
in Bank 𝐵? 

 Proceed in three steps, studying: 
i. interbank withdrawal behavior 

ii. fraction of investors served in Bank 𝐴 

iii. payoffs of investors in Bank 𝐵 
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1 − 𝜆 0 



Step (i): Interbank withdrawal behavior  

 Recall that a bank will withdraw its interbank deposit if 
and only if 𝑡 = 1 withdrawals exceed 𝜆𝑐1∗ 

 All investors at Bank 𝐴 attempt to withdraw at 𝑡 = 1      
⇒ 𝐴 withdraws its deposit from Bank 𝐵 
 suppose it receives 𝑧𝑐1∗  (face value) 

 Then 𝑡 = 1 withdrawals at Bank 𝐵 are: 

𝜆    +     𝑧 𝑐1∗   >  𝜆𝑐1∗ 

 

⇒ Bank 𝐵 withdraws its deposit from Bank 𝐴   (!) 

impatient 
investors 

Bank 𝐴 
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Step (ii): Fraction of investors served in Bank 𝐴: 

 

 

 

 

 Using 𝑐1∗, 𝑐2∗ = 1,𝑅 , we have 𝑥∗ = 1 − 𝜆  and 

𝑞𝐴 = 𝑟 1−𝜆 +𝜆+ 𝜆𝐻−𝜆
1+ 𝜆𝐻−𝜆

= 𝜆𝐻+𝑟 1−𝜆
𝜆𝐻+ 1−𝜆

< 1  

 Bank 𝐴 is bankrupt, despite the interbank deposit 

 

𝑞𝐴 =
𝑡𝑡𝑡𝑡𝑡 𝑎𝑎𝑎𝑎𝑎𝑎

𝑡𝑡𝑡𝑡𝑡 𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤𝑤
=
𝑟𝑥∗ + (1 − 𝑥∗) + 𝑧𝑐1∗

𝑐1∗ + 𝑧𝑐1∗
 

liquidated 
investment 

to 
Bank 𝐵 

own 
investors 

from 
Bank 𝐵 storage 
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𝑟𝑥∗ + (1 − 𝑥∗) + 𝑧𝑐1∗ 
𝑐1∗ + 𝑧𝑐1∗ 



 Repeating: 

𝑞𝐴 = 𝜆𝐻+𝑟 1−𝜆
𝜆𝐻+ 1−𝜆

< 1  

 An example: 

𝑟 =
1
2

,     𝜆𝐻=
3
4

,     𝜆𝐿=
1
4

    ⇒    𝜆 =
1
2
 

 then (verify) 

   𝑞𝐴 = 4
5
    (80% payout rate) 

 Note: 

𝑐2,𝐴 𝑒𝐴 = 1 − 𝜆, 𝑒𝐵 = 0 = 0 

 best response of a patient investor in Bank 𝐴 is indeed to 
withdraw at 𝑡 = 1 
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Step (iii): Payoffs of investors in Bank 𝐵 

 Assume it receives a fraction 𝑞𝐴 of its deposit from Bank 𝐴 
 rather than receiving whole deposit with probability 𝑞𝐴 

 idea: deposit represents many distinct interbank exposures 

 Needs  𝜆𝑐1∗  for its impatient investors, so … 

 must liquidate  1−𝑞𝐴 𝑧𝑐1∗

𝑟
    units of investment 

 why?  To cover the losses on its interbank deposits 
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 An investor in Bank 𝐵 who withdraws at 𝑡 = 2 receives: 

𝑐2,𝐵 𝑒𝐴 = 1 − 𝜆, 𝑒𝐵 = 0; 𝑠3 = max
𝑅 𝑥∗ − 1 − 𝑞𝐴 𝑧𝑐1∗

𝑟
1 − 𝜆

, 0  

 Using 𝑐1∗, 𝑐2∗ = 1,𝑅 , 

𝑐2,𝐵 𝑒𝐴 = 1 − 𝜆, 𝑒𝐵 = 0; 𝑠3 = max 𝑅 1 − 1−𝑞𝐴 𝜆𝐻−𝜆
𝑟 1−𝜆

, 0   

 For our example: 

   = 𝑅 1 −
1−𝑞𝐴

1
4

1
4

= 𝑞𝐴𝑅  
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4.2 Conditions for contagion 

Result 2: If         𝑐2,𝐵 𝑒𝐴 = 1 − 𝜆, 𝑒𝐵 = 0; 𝑠3 ≥ 𝑐1∗  

      then 𝑦 is a Nash equilibrium in state 𝑠3. 
 in our example, this requires 

𝑞𝐴𝑅 ≥ 1    or    𝑅 ≥
1
𝑞𝐴

   =
5
4

   (= 1.25) 

 Bank B suffers losses on its deposit, but not a run 

Result 3: Otherwise, 𝑦 is not a Nash equilibrium in 𝑠3. 

 in this case, the only equilibrium with 𝑦𝑖𝐴 = 1 also has 𝑦𝑖𝐵 = 1 

 a run on Bank 𝐴 necessarily causes a run on Bank 𝐵 

⇒  “financial contagion” (Allen & Gale) 
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“no contagion” 



 Looking at the balance sheet of Bank 𝐵 
 after liquidating investment to cover loss on interbank deposit 

 

 

 

 Bank 𝐵 is solvent if 𝐸 ≥ 0, or: 

𝑅 𝑥∗ −
1 − 𝑞𝐴 𝑧𝑐1∗

𝑟 + 1 − x∗ ≥ 𝑐1∗ 

 Solve for:                        𝑅 ≥ 1
𝑞𝐴

 

⇒ contagion occurs when losses make Bank 𝐵 insolvent 
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Assets Liabilities 

Investment 𝑅 𝑥∗ −
1 − 𝑞𝐴 𝑧𝑐1∗

𝑟  Deposits 𝑐1∗  

Storage 1 − 𝑥∗  
Equity E 



4.3  Equilibrium payoffs 

 The payoffs calculated above assumed no run on Bank 𝐵 

 If the run spreads to Bank 𝐵, it fails at 𝑡 = 1 and … 
 Bank 𝐴 suffers losses on its interbank deposit 

 𝑞𝐴 is even lower than what we calculated above 

 The fractions of investors served in equilibrium are 

𝑞𝐴 =
𝑟𝑥∗ + 1 − 𝑥∗ + 𝑞𝐵𝑧𝑐1∗

1 + 𝑧 𝑐1∗
 

𝑞𝐵 =
𝑟𝑥∗ + 1 − 𝑥∗ + 𝑞𝐴𝑧𝑐1∗

1 + 𝑧 𝑐1∗
 

 Solve for 

𝑞𝐴 = 𝑞𝐵 =
1 − 1 − 𝑟 𝑥∗

𝑐1∗
 

  

 

the same as in our 
baseline model 
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two equations in 
two unknowns 



 For our example: 

𝑞𝐴 = 𝑞𝐵 =
3
4

        <
4
5

 

 Due to the interbank deposits, the liquidation costs of a 
run are always shared by investors in both banks   

 If only Bank 𝐴 experiences a run, its investors suffer a 
loss of 20% 
 investors in Bank 𝐵 also lose some, but less 

 If the run spreads to Bank 𝐵, the losses of Bank A’s 
investors increase to 25% 
 in addition, investors in Bank 𝐵 now lose 25% as well 
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4.4 Extending the analysis to other states 

 

 

 

 We have focused on state 𝑠3 to simplify the calculations 

 Now consider the withdrawal game in state 𝑠2 

 If there is a run on Bank 𝐴: 
 both banks will withdraw their interbank deposits 

 Bank 𝐴 will fail, imposing losses on Bank 𝐵 

 Bank 𝐵 is in worse condition than before because it has 𝜆𝐻 

⇒ the run on Bank 𝐴 is more likely to spread to Bank 𝐵 

 

 

42 

Location 
state 𝐴 𝐵  probability 
𝑠1 𝜆𝐻 𝜆𝐿 1/3 
𝑠2 𝜆𝐿 𝜆𝐻 1/3 
𝑠3 𝜆 𝜆 1/3 



 

 

 

 Now consider state 𝑠1 

 note: a run on Bank 𝐵 would easily spread to Bank 𝐴 in 𝑠1 

 If there is a run on Bank 𝐴: 
 when does Bank 𝐵 withdraw its interbank deposit? 

 Bank 𝐵 does not need the funds at 𝑡 = 1 

 but it knows that if it waits until 𝑡 = 2 it will get nothing 

⇒ need to extend our rules of banking to fully study this case 
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Location 
state 𝐴 𝐵  probability 
𝑠1 𝜆𝐻 𝜆𝐿 1/3 
𝑠2 𝜆𝐿 𝜆𝐻 1/3 
𝑠3 𝜆 𝜆 1/3 



Bottom line (so far) 

 Interbank linkages are socially useful … 
 allow diversification of bank-specific liquidity risk 

 …but make financial crises contagious 
 a trigger that causes a run on one bank … 

 … could lead to the failure of many or all banks 

⇒ small shocks can have very large consequences 

 Focusing on state 𝑠3 makes these points in the clean way 
 but the same message emerges in all three states 
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5. Many Regions  
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 Now suppose there are four regions, with 

 

 

 

 regions 𝐶 and 𝐷 are replicas of 𝐴 and 𝐵 

 Risk-sharing role of interbank deposits is the same 

 But now there are different ways in which these deposits 
can be arranged 
 Bank 𝐴 could deposit with 𝐵, with 𝐷, or with both of them 

  

Location 
state 𝐴 𝐵  𝐶 𝐷 probability 
𝑠1 𝜆𝐻 𝜆𝐿 𝜆𝐻 𝜆𝐿 1/3 
𝑠2 𝜆𝐿 𝜆𝐻 𝜆𝐿 𝜆𝐻 1/3 
𝑠3 𝜆 𝜆 𝜆 𝜆 1/3 
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5.1 Bilateral interbank deposits 

 Suppose: 

 

 

 

 

 

 
 analysis is unchanged 

A B 

D C 

deposits 
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5.1 A circular network of deposits 

 Now suppose 

 

 

 

 

 Under this pattern there is again an equilibrium with 

𝑦𝑖
𝑗 = 2   ∀ 𝑖,∀ 𝑗  

 implements the (same) efficient allocation 

 But what happens now if there is a run on Bank 𝐴? 

A B 

D C 

deposit 
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 Focus again on state 𝑠3 

 Suppose    𝑦𝑖𝐴 = 1 and     

  𝑦𝑖
𝑗 = 2  for 𝑗 = 𝐵,𝐶,𝐷 

 Follow the same three steps as before: 
i. interbank withdrawal behavior 

ii. fraction of investors served in Bank 𝐴 

iii. payoffs of investors in Bank 𝐵 
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 If the run on Bank 𝐴 causes Bank 𝐵 to fail … 

 suppose 𝑦𝑖𝐵 = 1, then repeat step 𝑖𝑖  for Bank 𝐵 

 and step 𝑖𝑖𝑖  for the Bank 𝐶 

 and so on … 



Step (i): Interbank withdrawal behavior  

 

 

 

 Bank 𝐶 then withdraws from Bank 𝐵 … 

 … causing Bank 𝐵 to withdraw its deposit from Bank 𝐴 

In other words 

 A run on one bank ⇒ all interbank deposits withdrawn (!) 

 

 

 

 

 

 The run on Bank A causes it to 
withdraw from Bank 𝐷 

 Bank 𝐷 now has unusually high 
withdrawal demand, so it withdraws 
from Bank 𝐶  
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Step (ii): Fraction of investors served in Bank 𝐴: 
 (Verify) 𝑞𝐴 is the same as in the bilateral case 

Step (iii): Payoffs of investors in Bank 𝐵 
 a run on 𝐴 necessarily spreads to 𝐵 if: 

𝑐2,𝐵 𝑒𝐴 = 1 − 𝜆, 𝑒𝐵 = 𝑒𝐶 = 𝑒𝐷 = 0; 𝑠3 < 𝑐1∗ 

 (verify) exactly the same condition as in the bilateral case 

 Assume (1) holds 
 if there is a run on Bank 𝐴, it necessarily spreads to Bank 𝐵 

 what is the implication for Banks 𝐶 and 𝐷? 
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(1) 



 If Bank 𝐵 fails, we need to calculate the payout rate 𝑞𝐵 
 since Bank 𝐵 is losing money on its deposit in Bank 𝐴 … 

 can show: 𝑞𝐵 < 𝑞𝐴    (Bank 𝐵 is in worse shape than Bank 𝐴) 

 Use 𝑞𝐵 to calculate 𝑐2,𝐶 and ask if 
𝑐2,𝐶 𝑒𝐴 = 𝑒𝐵 = 1 − 𝜆, 𝑒𝐶 = 𝑒𝐷 = 0; 𝑠3 < 𝑐1∗ 

 can show: if (1) holds, then (2) also holds 

 In other words, if a run on 𝐴 causes 𝐵 to fail … 
 … then the run on 𝐵 will cause 𝐶 to fail … 

 … which will, in turn, cause 𝐷 to fail (verify) 
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(2) 



Result 4: With a circular network of interbank deposits 
 a run is contagious under the same conditions as before 

 but will now cause all banks to fail 

 This is a striking result 
 Bank 𝐶 had no (direct) dealing with Bank 𝐴 

 might have expected to be immune from 𝐴’s problems 

 but ends up failing as part of a “domino effect” 

 Small shocks can have very large consequences 
 imagine a circle network with 100+ banks 

 Circle network is clearly more fragile than bilateral deposits 

53 



5.3 A complete network of deposits 

Finally, suppose: 

 

 

 

 

 

 There is again an equilibrium with 

𝑦𝑖
𝑗 = 2   ∀ 𝑖,∀ 𝑗  

 What happens if there is a run on Bank 𝐴? 

 

 

A B 

D C 

1
2⁄  deposits 

1
2⁄  deposits 
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 Suppose    𝑦𝑖𝐴 = 1    and     

  𝑦𝑖
𝑗 = 2  for 𝑗 = 𝐵,𝐶,𝐷 

 Follow the same steps: 

55 

i. interbank withdrawal behavior 

ii. fraction of investors served in Bank 𝐴 

iii. payoffs of investors in Bank 𝐵 (and Bank 𝐶) 

Step (i): Interbank withdrawal behavior  
 run causes Bank 𝐴 to withdraw from Banks 𝐵 and 𝐷 

 𝐵 and 𝐷 now have high demand ⇒ withdraw from 𝐴 and 𝐶 

 causing 𝐶 to withdraw from 𝐵 and 𝐷 

 end result: all interbank deposits are withdrawn (again) 

focus again 
on state 𝑠3 



Step (ii): Fraction of investors served in Bank 𝐴: 
 (Verify) 𝑞𝐴 is the same as in the bilateral case 

Step (iii): Payoffs of investors in Bank 𝐵 (and Bank 𝐷) 
 Bank B is better off than bilateral case  

 because its deposit in Bank 𝐴 was only half as large 

 now must only liquidate 1
2
1−𝑞𝐴 𝑧𝑐1∗

𝑟
    units of investment 

 Calculate 𝑐2,𝐵 𝑒𝐴 = 1 − 𝜆, 𝑒𝐵 = 𝑒𝐶 = 𝑒𝐷 = 0; 𝑠3  as before  

 Note: Bank 𝐷 also suffers a loss on its interbank deposit 
𝑐2,𝐷 ∙ = 𝑐2,𝐵 ∙  
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Result 5: If     𝑐2,𝐵 𝑒𝐴 = 1 − 𝜆, 𝑒𝐵 = 𝑒𝐶 = 𝑒𝐷 = 0; 𝑠3 ≥ 𝑐1∗  

      then 𝑦 is a Nash equilibrium in state 𝑠3. 

 This condition is weaker than in the bilateral case 
 the run on Bank 𝐴 is less likely to be contagious 

 in our example, it requires 
9

10
𝑅 ≥ 1    or    𝑅 ≥ 1.11 

Result 3: Otherwise, 𝑦 is not a Nash equilibrium in 𝑠3. 
 in this case, a run on Bank 𝐴 necessarily causes a run on 

all other banks (verify) 

57 



 A run on Bank 𝐴 is less likely to spread under a 
complete network than with bilateral deposits 
 the losses caused by 𝐴’s failure are small for each bank 

 But if it does spread, it causes all other banks to fail 
 whereas only Bank 𝐵 fails in the bilateral case 

 Illustrates an important tradeoff 
 is having more interbank exposures good or bad? 

 no easy answer – it depends on what type of shock hits 

 Allen & Gale (2000) work through the implications of 
different network structures in more detail 
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6. Summary 
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Takeaways from Allen & Gale (2000) 

 Interbank linkages are socially useful … 
 allow diversification of bank-specific liquidity risk 

 …but make financial crises contagious 
 a trigger that causes a run on any one bank … 

 … could lead to the failure of many or all banks 

⇒ small shocks can have very large consequences 

 Strength of contagion depends on the size/pattern of 
these linkages 
 in practice this is unknown to policy makers 

 helps explain why predicting the course of events is difficult 
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 Example: the failure of Lehman Bros. in Sept. 2008 

 Predicting the effects of this failure was very difficult 
 people recognized it would depend on interbank linkages 

 but “… understanding Lehman's current trading positions 
was tough. Lehman's roster of interest-rate swaps (a type of 
derivative investment) ran about two million [contracts]” 

 One view: “because Lehman's troubles have been known 
for a while, … the market had had time to prepare.” 
⇒ govt. could allow Lehman to fail; effects would be contained 

 “We've re-established ‘moral hazard’ ... Is that a good thing 
or a bad thing? We're about to find out.” 

https://www.wsj.com/news/articles/SB122143670579134187 
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Franklin Allen and Douglas Gale (2007) Understanding Financial Crises, Oxford 
University Press. 

 Chapter 10 

Allen, Franklin and Douglas Gale (2000) “Financial Contagion,” Journal of Political 
Economy 108: 1-33. 
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Extra Material 
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A Comment on Efficient Allocations  
When There is No Aggregate Uncertainty 
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 Consider a pure exchange economy with uncertainty 

 single time period 

 two states, s = 𝑎, 𝑏 

 Two consumers, 𝑖 = 1,2 

 Strictly concave utility functions 𝑢𝑖 𝑐  

 State-dependent endowments: 𝑦𝑖 𝑠  

 consumer 1: 𝑦1 𝑎 ,𝑦1(𝑏) = 3,1  

 consumer 1: 𝑦2 𝑎 ,𝑦2(𝑏) = 1,3  

Q: What property must any Pareto optimal allocation satisfy? 
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A:  𝑐𝑖 𝑎 = 𝑐𝑖 𝑏   for 𝑖 = 1,2 
 each consumers’ consumption will be independent of the state 

Why? 
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 Consider any allocation with 𝑐1(𝑎) ≠ 𝑐1 𝑏  

 then 𝑐2(𝑎) ≠ 𝑐2(𝑏) 

 The allocation 𝑐̂𝑖 𝑎 , 𝑐̂𝑖 𝑏 = 𝑐𝑖 𝑎 +𝑐𝑖 𝑏
2

, 𝑐𝑖 𝑎 +𝑐𝑖 𝑏
2

 

 is feasible 

 is strictly preferred to 𝑐 by both consumers 

 This same property holds in the Allen-Gale model 

 uncertainty is about 𝜆, the fraction of impatient investors, 
but … 

 no aggregate uncertainty implies that consumers should 
face no individual uncertainty in an efficient allocation 
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Deriving Properties of the Efficient Allocation 
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Setting up the planner’s full problem 

 To simplify notation, let’s eliminate state 𝑠3 

 set: prob 𝑠1 = prob 𝑠2 = 1
2
  

 An allocation lists consumption plans in each location and 
each state: 

                𝑐1
𝑖,𝑗 𝑠 , 𝑐2

𝑖,𝑗 𝑠
𝑖∈ 0,1 , 𝑗∈ 𝐴,𝐵 , 𝑠∈{𝑠1,𝑠2}

 

 Again focus on symmetric allocations 
 investors in the same location are treated equally 

 plus: 𝑐𝐴 𝑠1 = 𝑐𝐵 𝑠2   and  𝑐𝐴 𝑠2 = 𝑐𝐵 𝑠1  

 Recall: there is no aggregate uncertainty about 𝜆 
 uncertainty is about where impatient investors will be located 
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 Some properties of any efficient allocation 
 no investment should be liquidated at 𝑡 = 1 

 no storage should be held until 𝑡 = 2 

 In our notation: 
𝜆𝐻𝑐1𝐴 𝑠1 + 𝜆𝐿𝑐1𝐵 𝑠1  = 1 − 𝑥

1 − 𝜆𝐻 𝑐2𝐴 𝑠1 + 1 − 𝜆𝐿 𝑐2𝐵 𝑠1  = 𝑅𝑅
 

and 
𝜆𝐿𝑐1𝐴 𝑠2 + 𝜆𝐻𝑐1𝐵 𝑠2  = 1 − 𝑥

1 − 𝜆𝐿 𝑐2𝐴 𝑠2 + 1 − 𝜆𝐻 𝑐2𝐵 𝑠2  = 𝑅𝑅
 

 Using symmetry, the first constraint becomes 
𝜆𝐻𝑐1𝐴 𝑠1 + 𝜆𝐿𝑐1𝐴 𝑠2 = 1 − 𝑥 
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as before 

note: we are not assuming 𝑐1𝐴 𝑠1 = 𝑐1𝐵 𝑠1  



Some first-order conditions 

 The choice of (𝑐1𝐴, 𝑐2𝐴) must maximize: 
1
2
𝜆𝐻𝑢 𝑐1𝐴(𝑠1) + 1 − 𝜆𝐻 𝑢 𝑐2𝐴(𝑠1)

+
1
2
𝜆𝐿𝑢 𝑐1𝐴(𝑠2) + 1 − 𝜆𝐿 𝑢 𝑐2𝐴(𝑠2)  

 subject to   𝜆𝐻𝑐1𝐴 𝑠1 + 𝜆𝐿𝑐1𝐴 𝑠2 = 1 − 𝑥   and other constraints 

 FOC for 𝑐1𝐴(𝑠1) and 𝑐1𝐴 𝑠2  : 
1
2 𝜆𝐻𝑢

′ 𝑐1𝐴 𝑠1 = 𝜆𝐻𝜇 

1
2 𝜆𝐿𝑢

′ 𝑐1𝐴 𝑠2 = 𝜆𝐿𝜇 

 Result: solution has 𝑐1𝐴 𝑠1 = 𝑐1𝐴 𝑠2  
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The result 

 The same steps can be applied to the planner’s other 
choices 

 Results:  

 𝑐1𝐴 𝑠 = 𝑐1𝐴 for all 𝑠  and   𝑐2𝐴 𝑠 = 𝑐2𝐴 for all 𝑠 

 𝑐1𝐵 𝑠 = 𝑐1𝐵 for all 𝑠  and   𝑐2𝐵 𝑠 = 𝑐2𝐵 for all 𝑠 

 Symmetry now implies: 𝑐1𝐴 = 𝑐1𝐵 and 𝑐2𝐴 = 𝑐2𝐵 

Result:  

 Any efficient allocation is completely characterized by 
two numbers: 𝑐1, 𝑐2  
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