BANKING AND FINANCIAL FRAGILITY

Financial Contagion: Allen and Gale (2000)

Professor Todd Keister Rutgers University

May 2017

- Financial crises often spread very quickly
 - problems may start in one region or one institution
 - but often trigger runs on other (unrelated?) institutions or in other regions
- Why?
- The Diamond-Dybvig model provides one theory
 - suppose Bank A fails (for whatever reason)
 - if this event causes investors elsewhere to lose confidence in their own banks ...
 - ... they may decide to withdraw ...
 - and the belief that the crisis will spread becomes self-fulfilling

- According to this view, a crisis may spread ...
- But it also may not spread
 - suppose investors in other banks do not lose confidence
- Allen & Gale show us how the situation may be worse than this view indicates
 - framework is very close to Diamond & Dybvig, but with multiple banks
 - under some conditions, a run on one bank <u>must</u> lead to runs on the other banks ⇒ "true" contagion
- Readings:
 - Allen & Gale (JPE, 2000)
 - Allen & Gale book, chapter 10

- 1. The Environment with Two Regions
- 2. The Efficient Allocation
- 3. Banking
- 4. Fragility and Contagion
- 5. Many Regions
- 6. Summary

1. The Environment with Two Regions

- The same as in our Diamond-Dybvig model, except:
- There are now two locations: *A*, *B*
 - each with a [0,1] continuum of investors
- There is uncertainty about the fraction of investors in each location who are impatient

Inontion

Docation					
<u>state</u>	<u>A</u>	<u>B</u>	probability		
<i>S</i> ₁	λ_H	λ_L	1/3		
<i>S</i> ₂	λ_L	λ_H	1/3		
S ₃	$\overline{\lambda}$	$\overline{\lambda}$	1/3		
		1.1			

• where $\lambda_H > \lambda_L$ and $\overline{\lambda} = \frac{\lambda_H + \lambda_L}{2}$

2. The (full information) efficient allocation

2.1 The planner's problem

- Suppose a planner could observe investors' types and control resources in both locations
- Note: there is no *aggregate* uncertainty about λ
 - uncertainty is about where impatient investors will be located
- Some properties of any efficient allocation:
 - no investment should be liquidated at t = 1 as before
 - no storage should be held until t = 2

• In state s_1 , for example:

$$\lambda_H c_1^A(s_1) + \lambda_L c_1^B(s_1) = 2(1-x)$$

(1 - \lambda_H) c_2^A(s_1) + (1 - \lambda_L) c_2^B(s_1) = 2Rx

• Repeating:

$$\lambda_H c_1^A(s_1) + \lambda_L c_1^B(s_1) = 2(1-x)$$

(1 - \lambda_H) c_2^A(s_1) + (1 - \lambda_L) c_2^B(s_1) = 2Rx

- Suppose the planner wants to set $c_t^A(s) = c_t^B(s)$ for all t, s
 - that is, planner treats investors in both banks equally

$$\frac{\lambda_{H} + \lambda_{L}}{2} c_{1}(s_{1}) = (1 - x)$$

$$\left(1 - \frac{\lambda_{H} + \lambda_{L}}{2}\right) c_{2}(s_{1}) = Rx$$

$$\Rightarrow c_{1} \text{ and } c_{2} \text{ are independent of } s$$

So we have

$$\frac{\bar{\lambda}c_1 = 1 - x}{(1 - \bar{\lambda})c_2 = Rx} \quad \} \quad \Rightarrow \bar{\lambda}c_1 + (1 - \bar{\lambda})\frac{c_2}{R} = 1$$

as in the baseline model (!)

• Investors' expected utility from (c_1, c_2) :

$$\frac{1}{3}(\lambda_{H}u(c_{1}) + (1 - \lambda_{H})u(c_{2})) + \frac{1}{3}(\lambda_{L}u(c_{1}) + (1 - \lambda_{L})u(c_{2})) + \frac{1}{3}(\overline{\lambda}u(c_{1}) + (1 - \overline{\lambda})u(c_{2}))$$

• Note:
$$\frac{1}{3}\lambda_H + \frac{1}{3}\lambda_L + \frac{1}{3}\overline{\lambda} = \overline{\lambda}$$

• The planner would then choose (c_1, c_2) to solve

$$\max_{\{c_1,c_2\}} \overline{\lambda} u(c_1) + (1-\overline{\lambda})u(c_2)$$

subject to
$$\overline{\lambda} c_1 + (1-\overline{\lambda})\frac{c_2}{R} = 1$$
 solution: (c_1^*, c_2^*)

10

Two key points:

(a) It is *feasible* for the planner to give the consumption plan (c_1^*, c_2^*) to every investor in every state

- because there is no aggregate uncertainty
- (b) If the planner places equal weight on all investors, then (c_1^*, c_2^*) is the *optimal* allocation

more intuition more details

In other words:

- The planner sees one big Diamond-Dybvig economy
 - the regions are not relevant from the planner's point of view
 - desired allocation of resources is exactly the same as before

• The efficient allocation is again summarized by two numbers:

 (c_1^*, c_2^*) with $c_1^* < c_2^*$

Possibilities:

2.2 Regional transfers

• A key feature of this allocation:

- the planner must transfer resources across regions
- Suppose the same portfolio is used in both regions

$$1 - x = \overline{\lambda}c_1^*$$
$$x = (1 - \overline{\lambda})\frac{c_2^*}{R}$$

- When a region has λ_H impatient investors, it needs more resources at t = 1
 - these resources come from storage in the other region, where there are only λ_L impatient investors
 - the λ_H region then has *extra* resources at t = 2

• At $t = 1$:	state s_1		state s_2	
	<u>A</u>	<u>B</u>	<u>A</u>	<u>B</u>
storage:	$\overline{\lambda}c_1^*$	$\overline{\lambda}c_1^*$	$\overline{\lambda}c_1^*$	$\overline{\lambda}c_1^*$
impatient consumption:	$\lambda_H c_1^*$	$\lambda_L c_1^*$	$\lambda_L c_1^*$	$\lambda_H c_1^*$
	\leftarrow		\rightarrow	
transfer of:	$(\lambda_H -$	$(\overline{\lambda})c_1^*$	$(\lambda_H -$	$-\overline{\lambda})c_1^*$

- These inter-region transfers are the new element in the Allen-Gale model
- At the aggregate level: everything is the same as before
 - the overall economy is exactly as in Diamond & Dybvig
- But there is now uncertainty at the regional level
 - result: the efficient allocation requires transferring resources across regions in each period
- How can our banking arrangement generate these transfers?
 - need to somehow include them in the rules governing bank behavior

3. Banking

3.1 A banking arrangement

- > Assume one (representative) bank per region
- Each offers investors the same contract as before ...
 - collects deposits at t = 0
 - allows investors to choose when they withdraw
 - withdrawals at t = 1 are paid c_1^* as long as funds are available
- ... and invests according to <u>average</u> liquidity demand:

$$1 - x = \overline{\lambda}c_1^*$$
$$x = (1 - \overline{\lambda})\frac{c_2^*}{R}$$

Interbank deposits:

- At t = 0, Bank A deposits an amount z in Bank B
- ... and Bank *B* deposits *z* in Bank *A*
- Interbank deposits have same rules as investor deposits
 - can be withdrawn in either period
 - withdrawing bank receives zc_1^* at t = 1 if funds are available
 - or a *z*-share of other bank's assets at t = 2
- Note: total funds available at t = 0 in Bank *A*:

1 + z - z = 1

Assume each bank deposits with the other bank:

$$z = (\lambda_H - \overline{\lambda}) \qquad \qquad \left(= \left(\overline{\lambda} - \lambda_L\right) = \frac{\lambda_H - \lambda_L}{2} \right)$$

- ▶ To meet withdrawals at *t* = 1, a bank will:
 - first use resources in storage,
 - then withdraw its interbank deposit,
 - then liquidate investment

```
"liquidation pecking order"
```

A bank withdraws its interbank deposit if and only if
 t = 1 withdrawals exceed λc₁^{*}

- As before, the banking rules create a withdrawal game
- Players: the investors in both regions
 - banks are non-strategic; they simply follow the specified rules
- Timing:
 - investors observe state *s* at the very beginning of t = 1
 - before choosing a withdrawal strategy
- We will study the game *separately in each state*
 - simplifies the notation, with no loss of generality
 - investors observe state *s*, then play the withdrawal game associated with *s*

- As before: impatient investors always withdraw at t = 1
 - do not value consumption at t = 2
- A strategy for an investor in Bank *j* is

 $y_i^j \in \{1,2\}$ as before

- $y_i = t$ means withdraw in period *t* when patient
- Other notation is similar to before:
 - $y = \left\{y_i^j\right\}_{j \in \{A,B\}, i \in [0,1]}$ is a profile of withdrawal strategies
 - y_{-i} = strategies of all investors (in both banks) except *i*

For any y_{-i} , define:

 $e_j(y_{-i})$ = number of t = 1 withdrawals by patient investors in bank $j \in \{A, B\}$

► as before:
$$e_j \in [0, 1 - \lambda]$$

- Rather than fully deriving the best-response functions, we will look for particular types of equilibria
 - ▶ ask whether certain profiles *y* are an equilibrium of the game

Q: Is there an equilibrium with

$$y_i^j = 2 \quad \forall \ i, \forall \ j ?$$

- Suppose y_{-i} has this form.
 - then $e_A(y_{-i}) = e_B(y_{-i}) = 0$
- Focus on the payoffs of investor i in state s_1
 - withdraws at $t = 1 \Rightarrow$ receives c_1^*
 - withdraws at $t = 2 \Rightarrow$ receives even share of her bank's assets
- What is this even share worth?

In state s_1 , Bank A (with λ_H) has:

An even share is worth:

$$c_{2,A}(e_A = e_B = 0; s_1) = \frac{(1 - \lambda_H)c_2^*}{1 - \lambda_H} = c_2^*$$

In state s_1 , Bank B (with λ_L) has:

An even share is worth:

$$c_{2,B}(e_A = e_B = 0; s_1) = \frac{(1 - \lambda_L)c_2^*}{1 - \lambda_L} = c_2^*$$

Best response of an investor in either bank is then $y_i^j = 2$

<u>Result 1</u>: There is a Nash equilibrium in state s_1 with $y_i^j = 2$ for all *i*.

- Verify: the same result holds in states s_2 , s_3
- Each investor receives consumption plan (c_1^*, c_2^*)
 - in every state of nature
 - even though state is not known when investment decisions are made

- Result 1 demonstrates the benefits of interbank deposits
 - allow efficient transfers of storage and investment across regions
 - a form of "risk sharing"
- Similar in spirit to the first result in Diamond & Dybvig
 - showed the benefits of maturity transformation
- Next question: what can go wrong?

4. Fragility and Contagion

 Under assumption (A1), there is an equilibrium where investors run on both banks, that is

$$y_i^A = 1$$
 and $y_i^B = 1$ for all i

- In this equilibrium, both banks withdraw their interbank deposit at t = 1
 - these deposits then simply cancel out
 - the analysis is exactly the same as in Diamond & Dybvig
- In this scenario, the run on one bank is not *causing* the other bank to fail
 - why did investors in Bank B lose confidence?
 - perhaps because of the run on Bank A ("simple" contagion)
 - or perhaps for some other reason

- Want to see how a problem in one bank *affects* the other
 - suppose the problem starts in Bank A
- Q: Is there an equilibrium of this game in which:
 - investors in Bank *A* run, but investors in Bank *B* do not run?
- If Bank *B* remains solvent, answer is "yes"
 - we will say there is "no contagion" in this case
- If the run on Bank A makes B insolvent, answer is "no":
 - the only equilibrium with a run on *A* also has a run on *B*
 - in this sense, a run on Bank *A* <u>causes</u> a run on Bank *B*
 - this is "contagion" in the Allen & Gale sense

- Note: with no interbank deposits, answer would be "yes"
 - if there is no relationship between the banks ...
 - then the outcome at *A* has no direct implication for *B*
- With interbank deposits ...
 - when Bank *A* fails, Bank *B* will lose money on its deposit
 - ▶ what are the implications for Bank *B*? (we need to check)
- To simplify the analysis, assume:
 - $u(c) = \ln(c) \Rightarrow (c_1^*, c_2^*) = (1, R)$
 - focus on the withdrawal game in state s_3
 - only serves to make the calculations easier

4.1 Calculating payoffs

- Suppose $y_i^A = 1$ and $y_i^B = 2$
- Then $e_A(y_{-i}) = 1 \overline{\lambda}$ and $e_B(y_{-i}) = 0$
- What is the best response of an investor in each region?
 - b does the interbank deposit make joining the run on Bank A less attractive?
 - what are the implications of the run on Bank *A* for investors in Bank *B*?
- Proceed in three steps, studying:
 - i. interbank withdrawal behavior
 - ii. fraction of investors served in Bank *A*
 - iii. payoffs of investors in Bank B

Step (i): Interbank withdrawal behavior

- Recall that a bank will withdraw its interbank deposit if and only if t = 1 withdrawals exceed $\overline{\lambda}c_1^*$
- All investors at Bank A attempt to withdraw at t = 1
 ⇒ A withdraws its deposit from Bank B
 - suppose it receives zc_1^* (face value)
- Then t = 1 withdrawals at Bank *B* are:

$$(\overline{\lambda} + z)c_1^* > \overline{\lambda}c_1^*$$
impatient Bank A
investors

 \Rightarrow Bank *B* withdraws its deposit from Bank *A* (!)

Step (ii): Fraction of investors served in Bank A:

• Using
$$(c_1^*, c_2^*) = (1, R)$$
, we have $x^* = (1 - \overline{\lambda})$ and

$$q_A = \frac{r(1-\overline{\lambda}) + \overline{\lambda} + (\lambda_H - \overline{\lambda})}{1 + (\lambda_H - \overline{\lambda})} = \frac{\lambda_H + r(1-\overline{\lambda})}{\lambda_H + (1-\overline{\lambda})} < 1$$

Bank *A* is bankrupt, despite the interbank deposit

• Repeating:

$$q_A = \frac{\lambda_H + r(1 - \overline{\lambda})}{\lambda_H + (1 - \overline{\lambda})} < 1$$

• An example:

$$r = \frac{1}{2}, \quad \lambda_H = \frac{3}{4}, \quad \lambda_L = \frac{1}{4} \quad \Rightarrow \quad \overline{\lambda} = \frac{1}{2}$$

• then (verify)

$$q_A = \frac{4}{5}$$
 (80% payout rate)

Note:

$$c_{2,A}(e_A=1-\overline{\lambda},e_B=0)=\mathbf{0}$$

best response of a patient investor in Bank A is indeed to withdraw at t = 1 Step (iii): Payoffs of investors in Bank B

- Assume it receives a fraction q_A of its deposit from Bank A
 - rather than receiving whole deposit with probability q_A
 - idea: deposit represents many distinct interbank exposures
- Needs $\overline{\lambda}c_1^*$ for its impatient investors, so ...
 - must liquidate $\frac{(1-q_A)zc_1^*}{r}$ units of investment
 - why? To cover the losses on its interbank deposits
An investor in Bank *B* who withdraws at *t* = 2 receives:

$$c_{2,B}(e_A = 1 - \overline{\lambda}, e_B = 0; s_3) = \max\left\{\frac{R\left(x^* - \frac{(1 - q_A)zc_1^*}{r}\right)}{1 - \overline{\lambda}}, 0\right\}$$

• Using $(c_1^*, c_2^*) = (1, R)$,

$$c_{2,B}\left(e_{A}=1-\overline{\lambda},e_{B}=0;s_{3}\right)=\max\left\{R\left(1-\frac{(1-q_{A})(\lambda_{H}-\overline{\lambda})}{r(1-\overline{\lambda})}\right),0\right\}$$

• For our example:

$$= R\left(1 - \frac{(1 - q_A)\frac{1}{4}}{\frac{1}{4}}\right) = q_A R$$

4.2 Conditions for contagion

Result 2: If
$$c_{2,B}(e_A = 1 - \overline{\lambda}, e_B = 0; s_3) \ge c_1^*$$

then y is a Nash equilibrium in state s_3 .

• in our example, this requires

$$q_A R \ge 1$$
 or $R \ge \frac{1}{q_A} = \frac{5}{4}$ (= 1.25) "no contagion"

Bank B suffers losses on its deposit, but not a run

<u>Result 3</u>: Otherwise, y is <u>not</u> a Nash equilibrium in s_3 .

- in this case, the only equilibrium with $y_i^A = 1$ also has $y_i^B = 1$
- > a run on Bank *A* necessarily causes a run on Bank *B*

 \Rightarrow "financial contagion" (Allen & Gale)

- Looking at the balance sheet of Bank *B*
 - after liquidating investment to cover loss on interbank deposit

Assets		Liabilities	
Investment	$R\left(x^* - \frac{(1-q_A)zc_1^*}{r}\right)$	Deposits	c_1^*
Storage	$1 - x^*$		
		Equity	E

▶ Bank *B* is solvent if $E \ge 0$, or:

$$R\left(x^* - \frac{(1 - q_A)zc_1^*}{r}\right) + 1 - x^* \ge c_1^*$$

• Solve for:

$$R \ge \frac{1}{q_A}$$

 \Rightarrow contagion occurs when losses make Bank *B* insolvent

4.3 Equilibrium payoffs

- The payoffs calculated above assumed no run on Bank *B*
- If the run spreads to Bank *B*, it fails at t = 1 and ...
 - Bank *A* suffers losses on its interbank deposit
 - q_A is even lower than what we calculated above
- > The fractions of investors served in equilibrium are

$$q_{A} = \frac{rx^{*} + (1 - x^{*}) + q_{B}zc_{1}^{*}}{(1 + z)c_{1}^{*}}$$
$$q_{B} = \frac{rx^{*} + (1 - x^{*}) + q_{A}zc_{1}^{*}}{(1 + z)c_{1}^{*}}$$

two equations in two unknowns

Solve for

$$q_A = q_B = \frac{1 - (1 - r)x^*}{c_1^*}$$

the same as in our baseline model

• For our example:

$$q_A = q_B = \frac{3}{4} \qquad \left(<\frac{4}{5}\right)$$

- Due to the interbank deposits, the liquidation costs of a run are always shared by investors in both banks
- If only Bank A experiences a run, its investors suffer a loss of 20%
 - investors in Bank *B* also lose some, but less
- If the run spreads to Bank *B*, the losses of *Bank A's investors* increase to 25%
 - in addition, investors in Bank *B* now lose 25% as well

4.4 Extending the analysis to other states

	Loc		
<u>state</u>	<u>A</u>	<u>B</u>	probability
<i>s</i> ₁	λ_{H}	λ_L	1/3
<i>s</i> ₂	λ_L	λ_{H}	1/3
<i>S</i> ₃	$\overline{\lambda}$	$\overline{\lambda}$	1/3

- We have focused on state s_3 to simplify the calculations
- Now consider the withdrawal game in state *s*₂
- If there is a run on Bank *A*:
 - both banks will withdraw their interbank deposits
 - Bank *A* will fail, imposing losses on Bank *B*
 - Bank *B* is in worse condition than before because it has λ_H
 - \Rightarrow the run on Bank *A* is *more likely* to spread to Bank *B*

	Loc		
<u>state</u>	<u>A</u>	<u>B</u>	probability
<i>S</i> ₁	λ_H	λ_L	1/3
<i>S</i> ₂	λ_L	λ_{H}	1/3
<i>S</i> ₃	$\overline{\lambda}$	$\overline{\lambda}$	1/3

- Now consider state *s*₁
 - note: a run on Bank *B* would easily spread to Bank *A* in s_1
- If there is a run on Bank *A*:
 - when does Bank *B* withdraw its interbank deposit?
 - Bank *B* does not need the funds at t = 1
 - but it knows that if it waits until t = 2 it will get nothing
 - \Rightarrow need to extend our rules of banking to fully study this case

Bottom line (so far)

- Interbank linkages are socially useful ...
 - allow diversification of bank-specific liquidity risk
- ...but make financial crises contagious
 - a trigger that causes a run on one bank ...
 - ... could lead to the failure of many or all banks
 - \Rightarrow small shocks can have very large consequences
- Focusing on state s_3 makes these points in the clean way
 - but the same message emerges in all three states

5. Many Regions

Now suppose there are four regions, with

Location							
<u>state</u>	<u>A</u>	<u>B</u>	<u>C</u>	<u>D</u>	<u>probability</u>		
<i>s</i> ₁	λ_H	λ_L	λ_H	λ_L	1/3		
<i>S</i> ₂	λ_L	λ_H	λ_L	λ_H	1/3		
<i>S</i> ₃	$\overline{\lambda}$	$\overline{\lambda}$	$\overline{\lambda}$	$\overline{\lambda}$	1/3		

- regions C and D are replicas of A and B
- Risk-sharing role of interbank deposits is the same
- But now there are different ways in which these deposits can be arranged
 - Bank *A* could deposit with *B*, with *D*, or with both of them

5.1 Bilateral interbank deposits

Suppose:

analysis is unchanged

5.1 A circular network of deposits

Now suppose

- Under this pattern there is again an equilibrium with $y_i^j = 2 \quad \forall i, \forall j$
 - implements the (same) efficient allocation
- But what happens now if there is a run on Bank *A*?

- ▶ Focus again on state *s*₃
- Suppose $y_i^A = 1$ and $y_i^j = 2$ for j = B, C, D
- Follow the same three steps as before:
 - i. interbank withdrawal behavior
 - ii. fraction of investors served in Bank *A*
 - iii. payoffs of investors in Bank B
- ▶ If the run on Bank *A* causes Bank *B* to fail ...
 - suppose $y_i^B = 1$, then repeat step (*ii*) for Bank *B*
 - and step (*iii*) for the Bank C
 - ▶ and so on ...

Step (i): Interbank withdrawal behavior

- The run on Bank A causes it to withdraw from Bank D
- Bank *D* now has unusually high withdrawal demand, so it withdraws from Bank *C*
- Bank *C* then withdraws from Bank *B* ...
- ... causing Bank *B* to withdraw its deposit from Bank *A*

In other words

• A run on one bank \Rightarrow all interbank deposits withdrawn (!)

Step (ii): Fraction of investors served in Bank A:

• (Verify) q_A is the same as in the bilateral case

Step (iii): Payoffs of investors in Bank B

• a run on A necessarily spreads to B if:

$$c_{2,B}(e_A = 1 - \overline{\lambda}, e_B = e_C = e_D = 0; s_3) < c_1^*$$
 (1)

- (verify) exactly the same condition as in the bilateral case
- Assume (1) holds
 - if there is a run on Bank *A*, it necessarily spreads to Bank *B*
 - what is the implication for Banks *C* and *D*?

- If Bank *B* fails, we need to calculate the payout rate q_B
 - since Bank *B* is losing money on its deposit in Bank *A* ...
 - can show: $q_B < q_A$ (Bank *B* is in worse shape than Bank *A*)
- Use q_B to calculate $c_{2,C}$ and ask if $c_{2,C}(e_A = e_B = 1 - \overline{\lambda}, e_C = e_D = 0; s_3) < c_1^*$ (2)
 - can show: if (1) holds, then (2) also holds
- In other words, if a run on A causes B to fail ...
 - ... then the run on *B* will cause *C* to fail ...
 - ... which will, in turn, cause *D* to fail (verify)

Result 4: With a circular network of interbank deposits

- a run is contagious under the same conditions as before
- but will now cause <u>all</u> banks to fail
- This is a striking result
 - Bank *C* had no (direct) dealing with Bank *A*
 - might have expected to be immune from A's problems
 - but ends up failing as part of a "domino effect"
- Small shocks can have very large consequences
 - imagine a circle network with 100+ banks
- Circle network is clearly more fragile than bilateral deposits

5.3 A complete network of deposits

Finally, suppose:

• There is again an equilibrium with

$$y_i^j = 2 \quad \forall i, \forall j$$

• What happens if there is a run on Bank *A*?

- Suppose $y_i^A = 1$ and $y_i^j = 2$ for j = B, C, D
- Follow the same steps:
 - i. interbank withdrawal behavior
 - ii. fraction of investors served in Bank *A*
 - iii. payoffs of investors in Bank *B* (and Bank *C*)
- Step (i): Interbank withdrawal behavior
 - run causes Bank A to withdraw from Banks B and D
 - ▶ *B* and *D* now have high demand \Rightarrow withdraw from *A* and *C*
 - causing C to withdraw from B and D
 - > end result: all interbank deposits are withdrawn (again)

focus again on state s_3

Step (ii): Fraction of investors served in Bank A:

• (Verify) q_A is the same as in the bilateral case

Step (iii): Payoffs of investors in Bank B (and Bank D)

- Bank B is better off than bilateral case
- because its deposit in Bank A was only half as large

• now must only liquidate
$$\frac{1}{2} \frac{(1-q_A)zc_1^*}{r}$$
 units of investment

- Calculate $c_{2,B}(e_A = 1 \overline{\lambda}, e_B = e_C = e_D = 0; s_3)$ as before
- > Note: Bank *D* also suffers a loss on its interbank deposit $c_{2,D}(\cdot) = c_{2,B}(\cdot)$

<u>Result 5</u>: If $c_{2,B}(e_A = 1 - \overline{\lambda}, e_B = e_C = e_D = 0; s_3) \ge c_1^*$ then y is a Nash equilibrium in state s_3 .

This condition is <u>weaker</u> than in the bilateral case

- the run on Bank *A* is less likely to be contagious
- in our example, it requires

$$\frac{9}{10}R \ge 1 \quad \text{or} \quad R \ge 1.11$$

<u>Result 3</u>: Otherwise, y is not a Nash equilibrium in s_3 .

 in this case, a run on Bank A necessarily causes a run on <u>all</u> other banks (verify)

- A run on Bank *A* is less likely to spread under a complete network than with bilateral deposits
 - the losses caused by *A*'s failure are small for each bank
- But if it does spread, it causes <u>all</u> other banks to fail
 - whereas only Bank *B* fails in the bilateral case
- Illustrates an important tradeoff
 - is having more interbank exposures good or bad?
 - no easy answer it depends on what type of shock hits
- Allen & Gale (2000) work through the implications of different network structures in more detail

6. Summary

Takeaways from Allen & Gale (2000)

- Interbank linkages are socially useful ...
 - allow diversification of bank-specific liquidity risk
- ...but make financial crises contagious
 - a trigger that causes a run on any one bank ...
 - ... could lead to the failure of many or all banks
 - \Rightarrow small shocks can have very large consequences
- Strength of contagion depends on the size/pattern of these linkages
 - in practice this is <u>unknown</u> to policy makers
 - helps explain why predicting the course of events is difficult

- Example: the failure of Lehman Bros. in Sept. 2008
- Predicting the effects of this failure was very difficult
 - people recognized it would depend on interbank linkages
 - but "... understanding Lehman's current trading positions was tough. Lehman's roster of interest-rate swaps (a type of derivative investment) ran about two million [contracts]"
- One view: "because Lehman's troubles have been known for a while, ... the market had had time to prepare."
 - \Rightarrow govt. could allow Lehman to fail; effects would be contained
 - "We've re-established 'moral hazard' ... Is that a good thing or a bad thing? We're about to find out."

https://www.wsj.com/news/articles/SB122143670579134187

Franklin Allen and Douglas Gale (2007) Understanding Financial Crises, Oxford University Press.

Chapter 10

Allen, Franklin and Douglas Gale (2000) "<u>Financial Contagion</u>," *Journal of Political Economy* 108: 1-33.

Extra Material

A Comment on Efficient Allocations When There is No Aggregate Uncertainty

- Consider a pure exchange economy with uncertainty
 - single time period
 - two states, s = a, b
- Two consumers, i = 1,2
- Strictly concave utility functions $u_i(c)$
- State-dependent endowments: $y_i(s)$
 - consumer 1: $(y_1(a), y_1(b)) = (3,1)$
 - consumer 1: $(y_2(a), y_2(b)) = (1,3)$

Q: What property must any Pareto optimal allocation satisfy?

A: $c_i(a) = c_i(b)$ for i = 1,2

• each consumers' consumption will be independent of the state

Why?

- Consider any allocation with $c_1(a) \neq c_1(b)$
 - then $c_2(a) \neq c_2(b)$
- The allocation $(\hat{c}_i(a), \hat{c}_i(b)) = \left(\frac{c_i(a) + c_i(b)}{2}, \frac{c_i(a) + c_i(b)}{2}\right)$
 - is feasible
 - is strictly preferred to *c* by both consumers
- This same property holds in the Allen-Gale model
 - uncertainty is about λ, the fraction of impatient investors, but ...
 - no aggregate uncertainty implies that consumers should face no individual uncertainty in an efficient allocation

<u>(return)</u>

Deriving Properties of the Efficient Allocation

Setting up the planner's full problem

▶ To simplify notation, let's eliminate state *s*³

• set:
$$prob(s_1) = prob(s_2) = \frac{1}{2}$$

An allocation lists consumption plans in each location and each state:

$$\left\{ \left(c_1^{i,j}(s), c_2^{i,j}(s) \right) \right\}_{i \in [0,1], j \in \{A,B\}, s \in \{s_1, s_2\}}$$

- Again focus on symmetric allocations
 - investors in the same location are treated equally
 - plus: $c^{A}(s_1) = c^{B}(s_2)$ and $c^{A}(s_2) = c^{B}(s_1)$
- Recall: there is no *aggregate* uncertainty about λ
 - uncertainty is about where impatient investors will be located

- Some properties of any efficient allocation
 - no investment should be liquidated at t = 1
 no storage should be held until t = 2

In our notation:

$$\lambda_H c_1^A(s_1) + \lambda_L c_1^B(s_1) = 1 - x$$

(1 - \lambda_H) c_2^A(s_1) + (1 - \lambda_L) c_2^B(s_1) = Rx

and

$$\lambda_L c_1^A(s_2) + \lambda_H c_1^B(s_2) = 1 - x$$

(1 - \lambda_L) c_2^A(s_2) + (1 - \lambda_H) c_2^B(s_2) = Rx

Using symmetry, the first constraint becomes $\lambda_{H}c_{1}^{A}(s_{1}) + \lambda_{L}c_{1}^{A}(s_{2}) = 1 - x$

note: we are **not** assuming $c_1^A(s_1) = c_1^B(s_1)$

• The choice of (c_1^A, c_2^A) must maximize:

$$\frac{1}{2} \left(\lambda_H u (c_1^A(s_1)) + (1 - \lambda_H) u (c_2^A(s_1)) \right) \\ + \frac{1}{2} \left(\lambda_L u (c_1^A(s_2)) + (1 - \lambda_L) u (c_2^A(s_2)) \right)$$

- subject to $\lambda_H c_1^A(s_1) + \lambda_L c_1^A(s_2) = 1 x$ and other constraints
- FOC for $c_1^A(s_1)$ and $c_1^A(s_2)$:

$$\frac{1}{2}\lambda_{H}u'\left(c_{1}^{A}(s_{1})\right) = \lambda_{H}\mu$$
$$\frac{1}{2}\lambda_{L}u'\left(c_{1}^{A}(s_{2})\right) = \lambda_{L}\mu$$

• Result: solution has $c_1^A(s_1) = c_1^A(s_2)$

- The same steps can be applied to the planner's other choices
- Results:
 - $c_1^A(s) = c_1^A$ for all s and $c_2^A(s) = c_2^A$ for all s
 - $c_1^B(s) = c_1^B$ for all s and $c_2^B(s) = c_2^B$ for all s
- Symmetry now implies: $c_1^A = c_1^B$ and $c_2^A = c_2^B$

Result:

• Any efficient allocation is completely characterized by two numbers: (c_1, c_2)