

Stablecoins vs. Tokenized Deposits: The Narrow Banking Issue Revisited

Xuesong Huang

*Lingnan College
Sun Yat-sen University*

Todd Keister

*Federal Reserve Bank of New York
and Rutgers University*

Summer Workshop on Money, Banking, Payments and Finance

August 13, 2025

The views expressed here are those of the authors and do not necessarily reflect the position of the Federal Reserve Bank of New York or the Federal Reserve System.

Motivation

- ▶ Strong demand for a blockchain-native form of money
 - ▶ denominated in traditional units (such as U.S. dollars)
 - ▶ so-called stablecoins are currently playing this role
- ▶ Ongoing debate about how this money should be created
- ▶ One view: should be backed by safe, liquid assets (100% T-bills)
 - ▶ good for financial stability, transparency; (*true*) *stablecoins*
- ▶ Competing view: should be issued by regulated/insured banks
 - ▶ would be backed by the usual assets that banks hold (loans, etc.)
 - ▶ builds on current system; *tokenized deposits*
- ▶ Or: could allow both types → competition will determine what is best

Narrow banks

- ▶ One way to frame this debate:
Should tokenized money be created by narrow or traditional banks?
- ▶ More precisely, two questions:
 - ▶ (i) should we allow narrow banks to create tokenized money?
 - ▶ (ii) should we require banks that create tokenized money to be narrow?
- ▶ The narrow banking debate has a long history ...
- ▶ ... but the question here is a little different because of its limited scope
 - ▶ suppose we take as given that traditional banks will issue traditional deposits
 - ▶ the question is whether narrow banking is desirable in a new sector
 - ▶ will show: this fact makes narrow banking more attractive

Our focus

- ▶ The narrow banking issue has several dimensions
 - ▶ financial stability, legal, regulatory, etc.
- ▶ We focus on one: money's role in facilitating exchange and investment
- ▶ If there is a liquidity premium ...
 - ▶ i.e., money has a lower return than illiquid assets
- ▶ ... the assets backing money have privileged financing
 - ▶ they are financed more easily, at lower cost, more securely, etc.

Q: What assets do we want to benefit from this privilege?

Preview

- ▶ We develop a simple model of money and trade (Lagos-Wright) in which:
 - ▶ traditional trade takes place using (traditional) bank deposits
 - ▶ banks have a portfolio of risky projects (~ loans) and safe bonds
 - ▶ “crypto” trade requires a tokenized medium of exchange
 - ▶ could be created by traditional banks (*tokenized deposits*)
 - ▶ or by narrow banks holding only safe bonds (*stablecoins*)
- ▶ Study three policy regimes:
 - ▶ both types allowed
 - ▶ only banks
 - ▶ only stablecoins
- ▶ Ask which regime generates the highest welfare
 - ▶ answer depends on parameter values (in an intuitive way)
 - ▶ only stablecoins (narrow banking) is more attractive than you might think

Related literature

- ▶ **Stablecoins:**
 - ▶ Baughman, Carapella, Gerszten & Mills (2022), Gorton & Zhang (2023), Gorton, Klee, Ross, Ross & Vardoulakis (2025), Ma, Zeng, and Zhang (2023), van Buggenum , Gersbach & Zelzner (2023), Azzimonti & Quadrini (2025), Gomis-Porqueras & Sanches (yesterday), BIS Annual Report (2025), etc.
- ▶ **Narrow banking:**
 - ▶ Williamson (2024), Pennacchi (2012), Wallace (1996), Friedman (1960), Douglas et. al (1939)
- ▶ **Inside and outside money**
 - ▶ Gurley and Shaw (1960), Cavalcanti & Wallace (1999), Bullard & Smith (2003), Lagos (2008), others
- ▶ **Central bank digital currency:**
 - ▶ Andolfatto (2021), Chiu, Davoodalhosseini, Jiang & Zhu (2023), Williamson (2023), Keister & Sanches (2023), Niepelt (2024), and many others

Outline

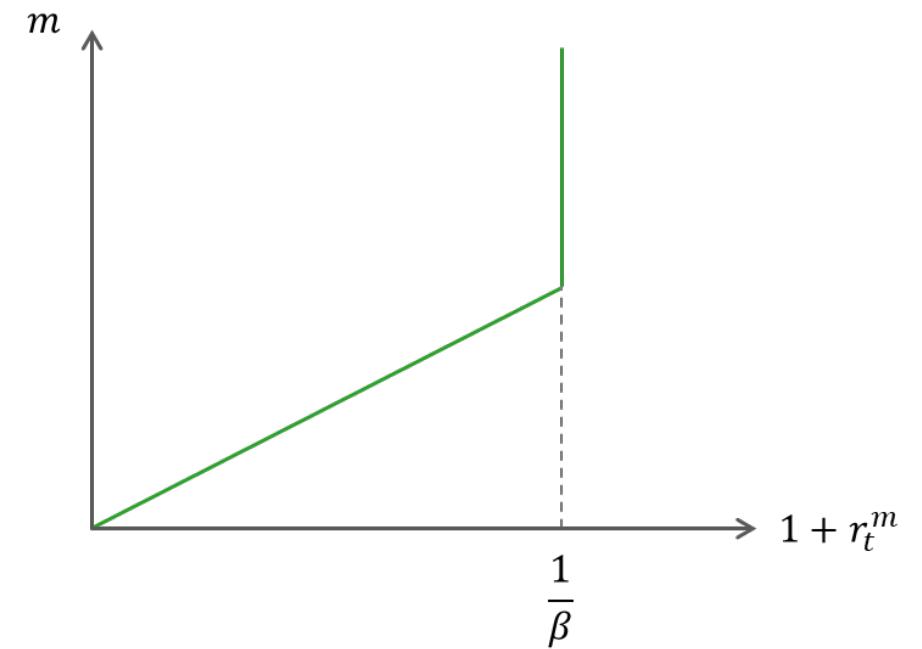
1. Introduction
2. The model
3. Baseline equilibrium: a neutrality result
4. Equilibrium with risk and regulation
 - ▶ do crypto buyers use stablecoins or tokenized deposits?
5. Legal restrictions
 - ▶ should one be prohibited?
6. Conclusion

Setup

- ▶ Dynamic GE model in tradition of Lagos & Wright (2005) and others
 - ▶ alternating centralized and decentralized markets (CM & DM)
 - ▶ matching/information frictions ⇒ need for a medium of exchange
 - ▶ builds on Keister and Sanches (2023) ... and many others
- ▶ Agents:
 - ▶ buyers produce in CM; consume in DM
 - ▶ sellers produce in DM; consume in CM
 - ▶ bankers issue deposits, invest in risky projects and safe assets (bonds)
 - ▶ stablecoin issuers issue coins, invest in safe assets
 - ▶ government insures deposits; regulates banks (Pigouvian tax)
- ▶ Let's look at each in turn ...

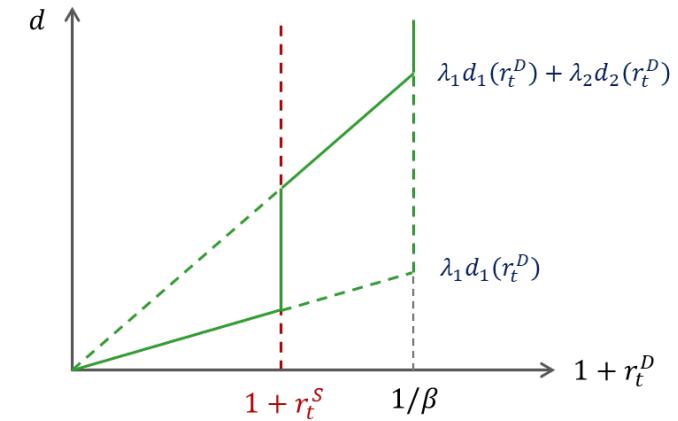
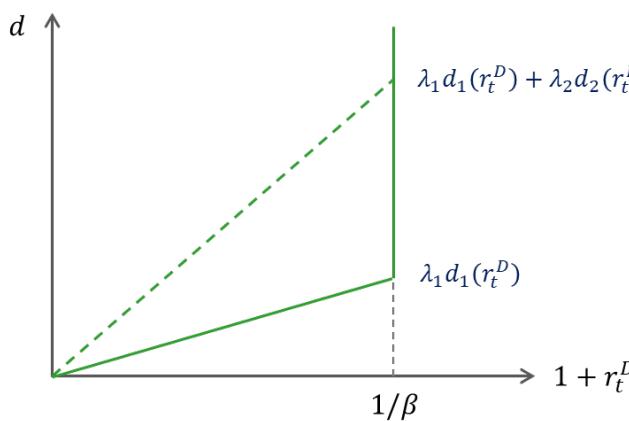
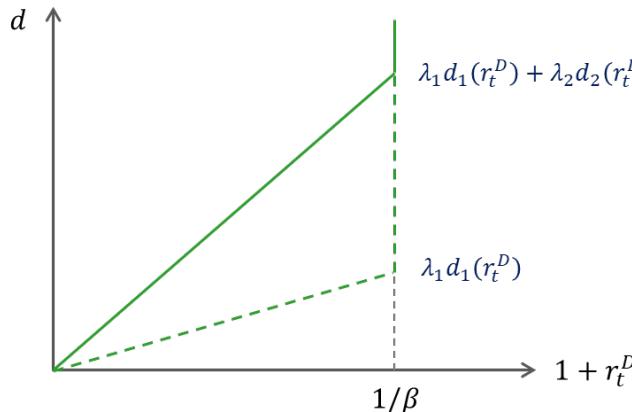
Buyers and sellers

- ▶ Buyers: like to consume the DM good $U^b = x_t^b + u(q_t)$
- ▶ Sellers: can produce the DM good $U^s = x_t^s - w(q_t)$
 - ▶ no bilateral credit in DM trades (due to anonymity)
→ completely standard
- ▶ Two types of DM matches
 - ▶ measure λ_1 : traditional → must pay using a bank deposit
 - ▶ measure λ_2 : crypto → must pay with blockchain-native money


Q: Who can create this blockchain-native money?

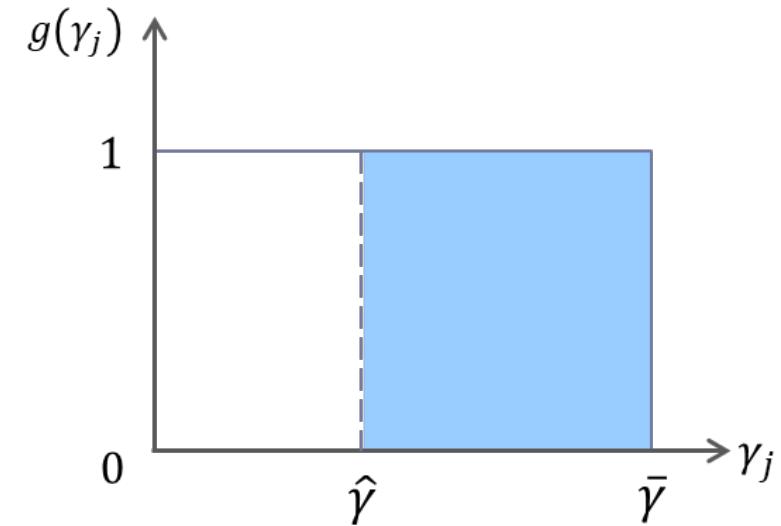
- ▶ bankers: tokenized deposits (backed by portfolio of projects and bonds)
- ▶ stablecoin issuer: stablecoins (backed only by safe bonds)

Individual money demand




- ▶ A buyer learns the type of meeting in advance
 - ▶ exits CM holding deposits or a mix of tokenized deposits and stablecoins
- ▶ Chooses quantity based on the usual considerations
 - ▶ terms of trade (buyer makes take-it-or-leave-it offer), etc.
 - ▶ focus on: the real return on that type of money

individual money demand

Aggregate deposit demand


- Depends on what can be used in crypto meetings:

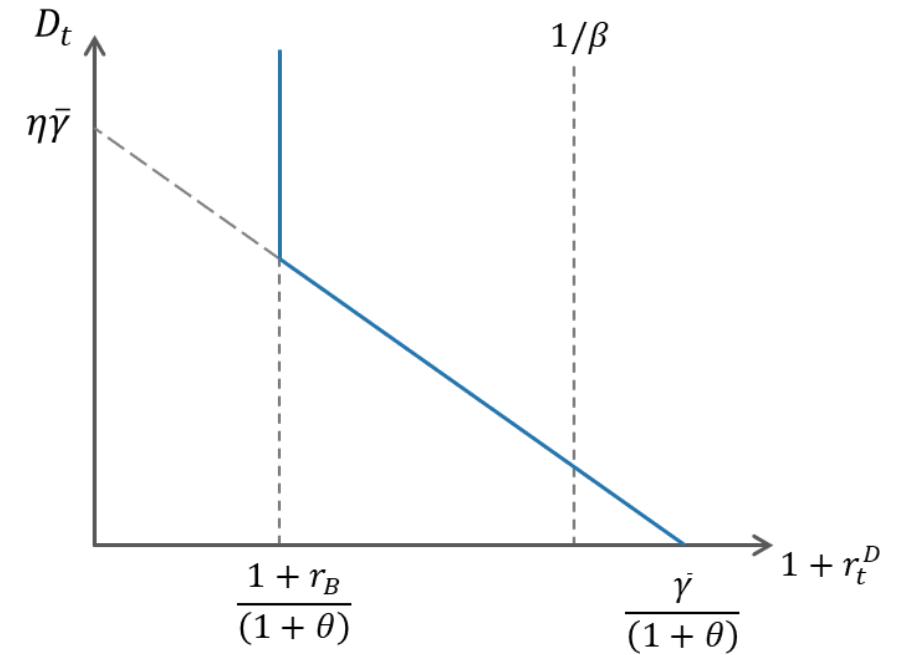
- Only tokenized deposits:
 - sum the demand of the two types
- Only stablecoins:
 - demand only from traditional buyers
- Both:
 - crypto buyers hold the higher return option
 - return on stablecoins: $1 + r_t^S$

Bankers

- ▶ Measure η of bankers born in each CM; live until next CM
- ▶ Each has access to a set of risky projects (indexed by j)
 - ▶ requires fixed input (1) in the CM
 - ▶ output in the next period is:
 - ▶ γ^j with prob. $1 - q$
 - ▶ 0 with prob. q
 - ▶ a banker's projects are perfectly correlated (all succeed or all fail)
 - ▶ shock is i.i.d. across bankers
- ▶ Can also invest in risk free storage technology ("bonds")
 - ▶ fixed, relatively low return $1 + r^B < \frac{1}{\beta}$

⇒ Diminishing returns to investment

- ▶ Bankers live for two periods, must borrow to fund projects
 - ▶ issue deposits in competitive market at interest rate $1 + r_D$
- ▶ Deposits are insured by the government
 - ▶ promised rate $1 + r_D$ must be feasible if banker's projects succeed
- ▶ Banker is taxed on deposits at rate θ (if successful)
 - ▶ reflects DI premium, but also regulation of leverage, risky assets, etc.
- ▶ A period- t banker chooses $\hat{\gamma}_t, b_t, D_t$ to maximize:


$$(1 - q) \left(\int_{\hat{\gamma}_t}^{\bar{\gamma}} (\gamma_j) d\gamma_j + (1 + r^B) b_t - (1 + \theta)(1 + r_t^D) D_t \right) + q \cdot 0$$

$$s. t. \quad D_t = (\bar{\gamma} - \gamma_j + b_t)$$

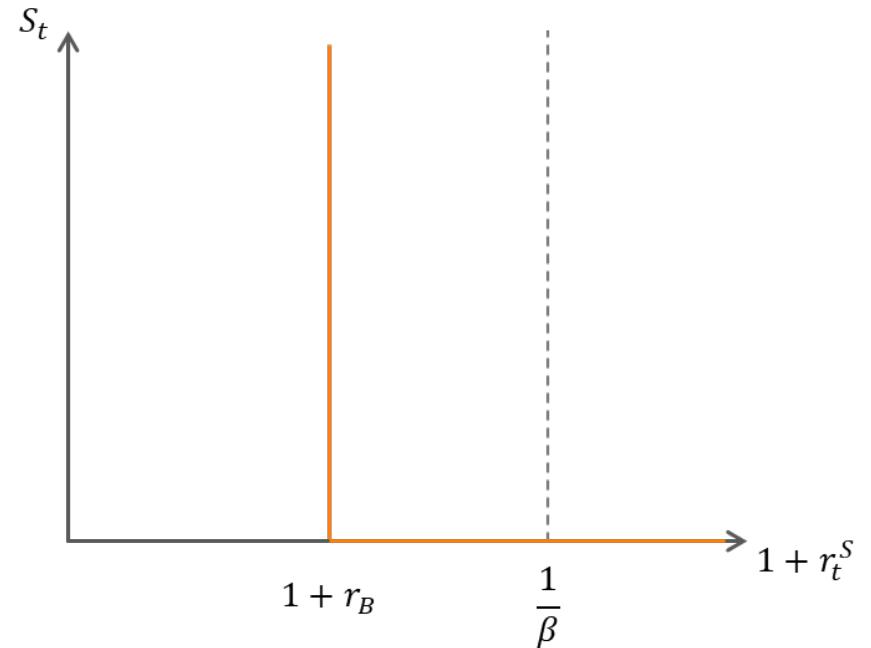
$$b_t \geq 0$$

Deposit supply

- ▶ Optimal investment cutoff is: $\hat{\gamma}(r_t^D) = (1 + \theta)(1 + r_t^D)$
 - ▶ project return needs to cover funding cost (including the tax)
 - ▶ supply of deposits is $D_t = \eta(\bar{\gamma} - \hat{\gamma}(r_t^D))$
 - ▶ unless: $1 + r^B = (1 + \theta)(1 + r_t^D)$
 - ▶ in which case: banker will hold bonds
- ▶ Height of curve determined by:
 - ▶ η : measure of bankers
 - ▶ $\bar{\gamma}$: upper bound on return
 - ▶ θ : tax on bankers

Stablecoin issuer

- ▶ Stablecoin issuer is like a banker with no productive projects
 - ▶ can only invest in risk-free bonds
 - ▶ never fails → no tax on its operations
- ▶ Issuer chooses: b_t^S, S_t to maximize:


$$(1 + r^B)b_t^S - (1 + r_t^S)S_t$$

$$s.t. \quad S_t = b_t^S$$

$$S_t \geq 0$$

- ▶ Any equilibrium with $S_t > 0$ must have:

$$1 + r_t^S = 1 + r^B$$

Final bits

- ▶ **Government:**

- ▶ collects taxes from banks, pays depositors at failed banks
- ▶ balances budget with a lump-sum tax in the CM

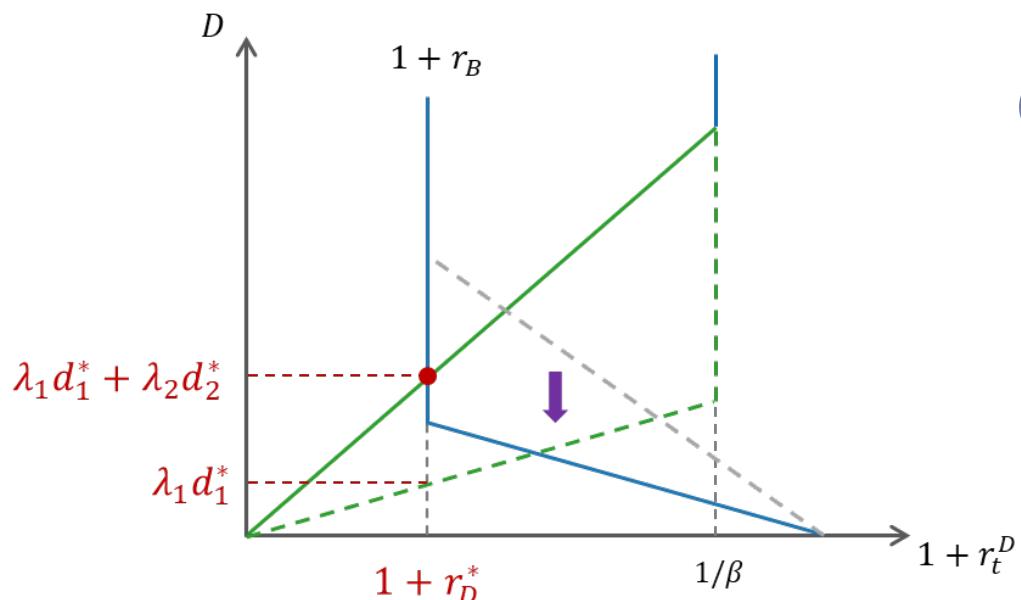
- ▶ **Welfare:**

$$\sum_{t=0}^{\infty} \beta^t \left(\underbrace{x_t^b + x_t^s + \eta x_t}_{\equiv X_t} + \lambda_1 [u(q_t^1) - w(q_t^1)] + \lambda_2 [u(q_t^2) - w(q_t^2)] \right)$$

- ▶ **CM Feasibility:**

$$X_t \leq \eta(1-q) \int_{\hat{\gamma}_{t-1}}^{\bar{\gamma}} \gamma_j \, d\gamma_j + (1+r^B)(b_{t-1} + b_{t-1}^s) - [\eta(\bar{\gamma} - \hat{\gamma}_t) + b_t + b_t^s]$$

Outline



1. Introduction
2. The model
3. **Baseline equilibrium: a neutrality result**
4. Equilibrium with risk and regulation
 - ▶ do crypto buyers use stablecoins or tokenized deposits?
5. Legal restrictions
 - ▶ should one be prohibited?
6. Conclusion

A special case

- ▶ Suppose projects are not risky ($q = 0$) ...
 - ▶ ... and banks are not taxed/regulated ($\theta = 0$)
- ▶ Assume for a moment: only bankers operate (no stablecoins)
- ▶ Equilibrium: two cases depending on availability of projects

(ii) With greater scarcity of good projects:

- ▶ banks invest in a mix of projects/loans and bonds
- ▶ deposits are a mix of *inside money* and *outside money*

Neutrality

Q: What does this tell us about stablecoins vs. tokenized deposits?

- ▶ Reintroduce the stablecoin issuer (but continue to focus on $q = \theta = 0$)

Result: The equilibrium consumption allocation is unchanged

- ▶ if banks held bonds in the original equilibrium, there is now a continuum of equilibria
- ▶ different mix of D^* and S^* , but $D^* + S^*$ is the same in all of them
- ▶ Reason: bankers can do anything the stablecoin issuer can do
 - ▶ the vertical parts of the two supply curves are on top of each other
 - ▶ the model pins down the assets backing money (inside vs outside)
 - ▶ but not who issues the money (banks vs stablecoins)

So ...

Outline

1. Introduction
2. The model
3. Baseline equilibrium: a neutrality result
4. Equilibrium with risk and regulation
 - ▶ do crypto buyers use stablecoins or tokenized deposits?
5. Legal restrictions
 - ▶ should one be prohibited?
6. Conclusion

Risk and regulation

- Now: projects are risky ($q > 0$) and banks are taxed/regulated ($\theta > 0$)

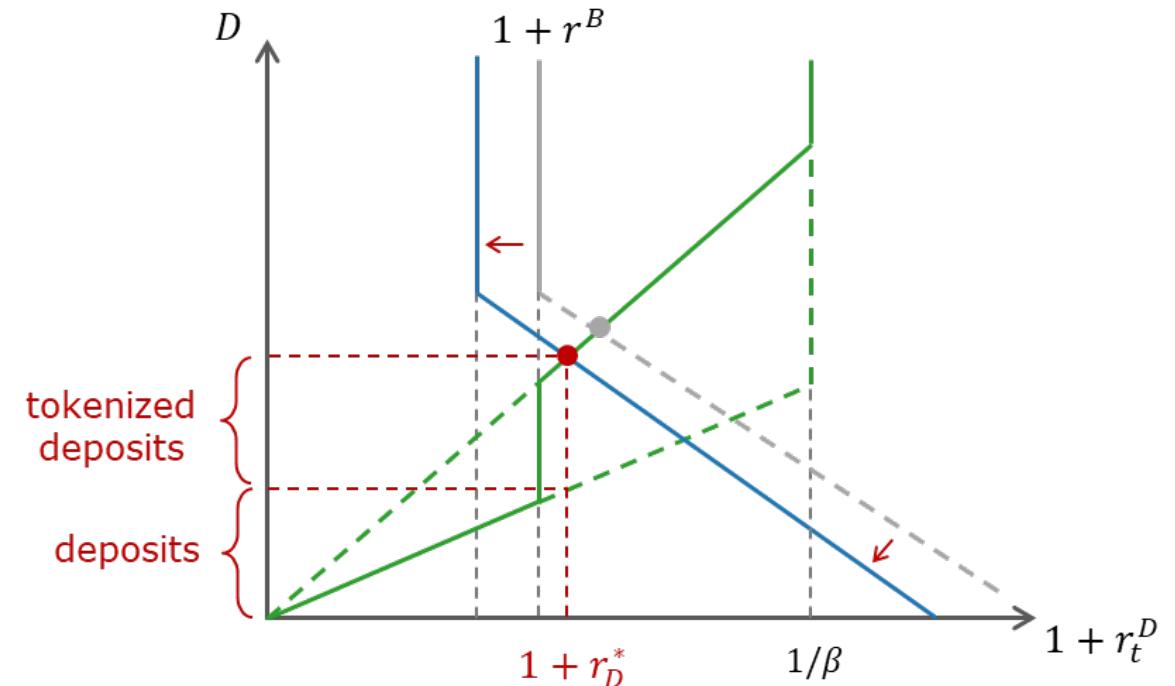
Banker chooses: \hat{y}_t, b_t, D_t to maximize:

$$(1 - q) \left(\int_{\hat{y}_t}^{\bar{y}} (\gamma_j) d\gamma_j + (1 + r^B) b_t - (1 + \theta)(1 + r_t^D) D_t \right) + q \cdot 0$$


s.t. $D_t = (\bar{y} - \gamma_j + b)$

- How does risk affect the supply of deposits?

- not at all

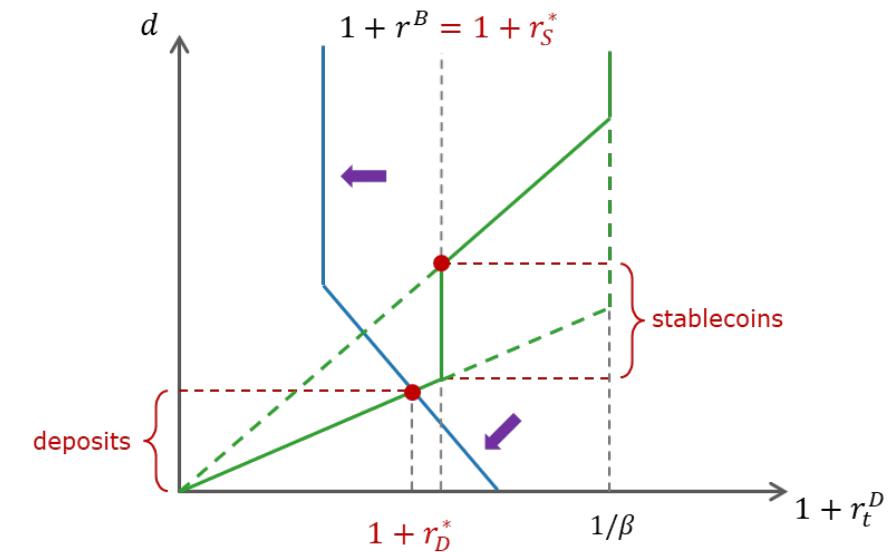
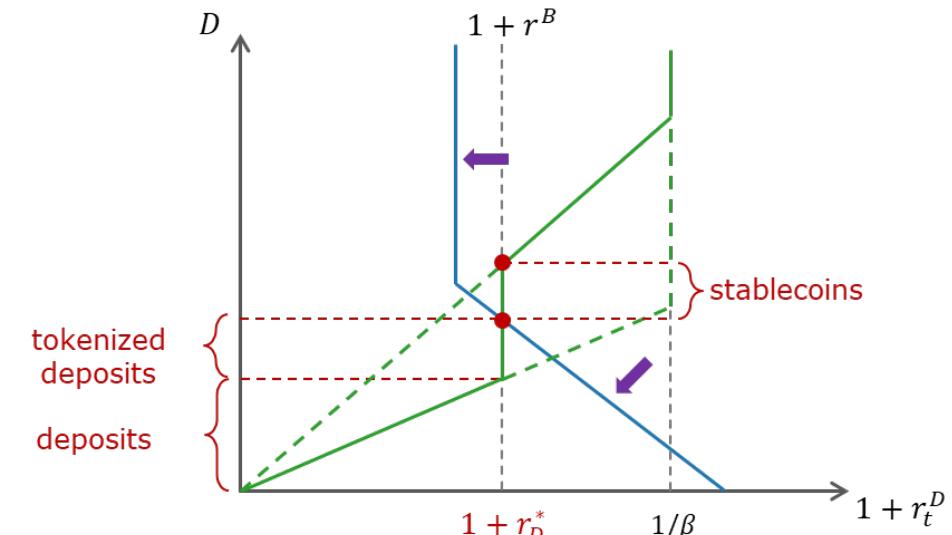

- How does the tax θ affect it?

- fewer projects are profitable at any $1 + r^D$
- and the bond cutoff decreases

A small tax

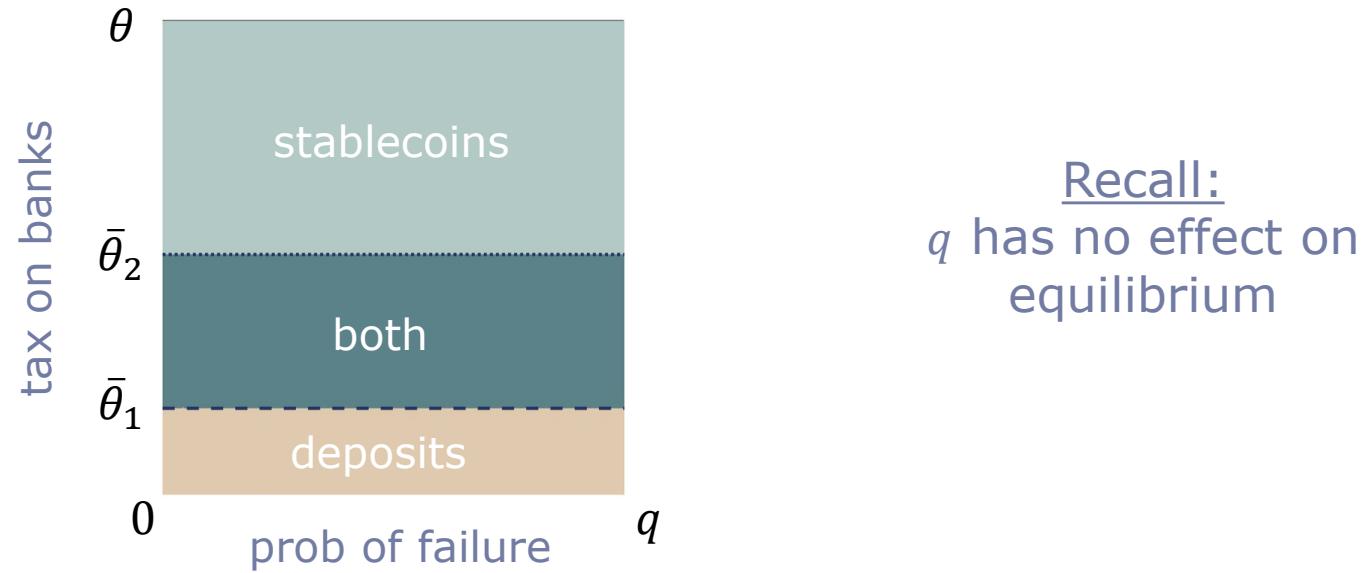
- ▶ Start from a situation where only deposits are used in equilibrium (mild scarcity)
- ▶ If we introduce a small tax on banks ...
- ▶ ... the deposit rate is still above $1 + r^B$...
- ▶ ... and stablecoins are still not used

Result: If $\theta < \bar{\theta}_1$, only tokenized deposits are used (in crypto meetings)



Increasing the tax further

- Deposit rate falls until ...
 - ... stablecoins are attractive to crypto buyers

Result: If $\bar{\theta}_1 < \theta < \bar{\theta}_2$, a mix of tokenized deposits and stablecoins is used


- If we keep increasing θ ...
 - deposit rate falls below $1 + r^B$
 - all crypto buyers use stablecoins
 - markets are effectively segmented

Result: If $\theta > \bar{\theta}_2$, only stablecoins are used (in crypto matches)

What do crypto buyers use?

- ▶ Summarizing:

Recall:
 q has no effect on equilibrium

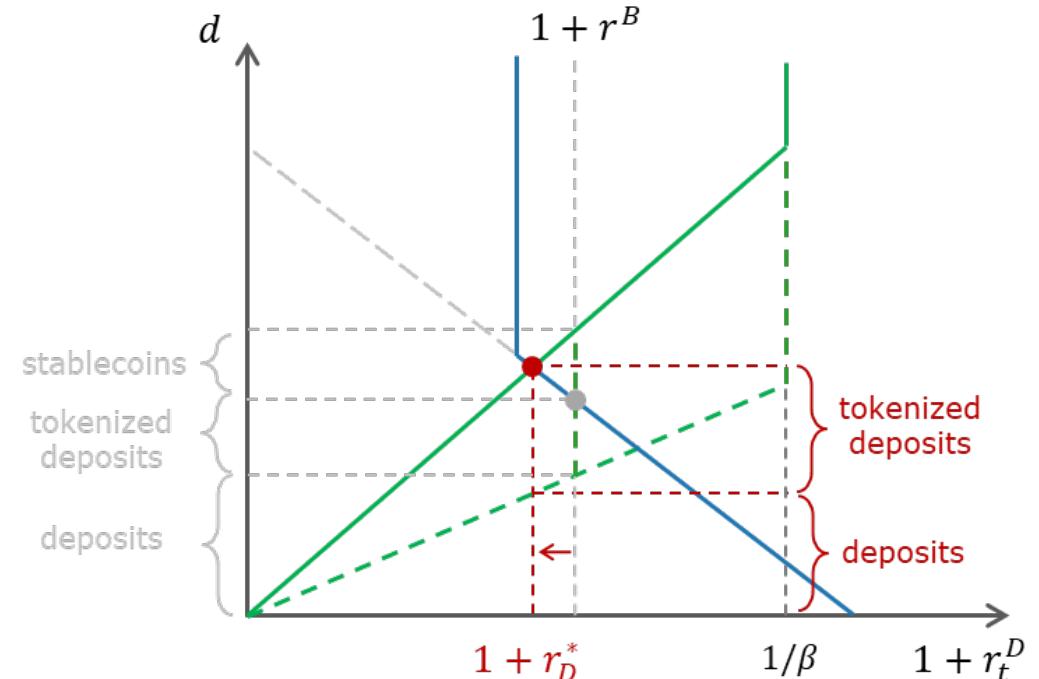
- ▶ If both banks and stablecoins are allowed to operate ...
- ▶ ... we have a simple theory of what will be used in equilibrium
- ▶ But ... should both banks and stablecoins be allowed to operate?
 - ▶ what is the best policy regime?

Outline

1. Introduction
2. The model
3. Baseline equilibrium: a neutrality result
4. Equilibrium with risk and regulation
 - ▶ do crypto buyers use stablecoins or tokenized deposits?
5. Legal restrictions
 - ▶ should one be prohibited?
6. Conclusion

Motivation

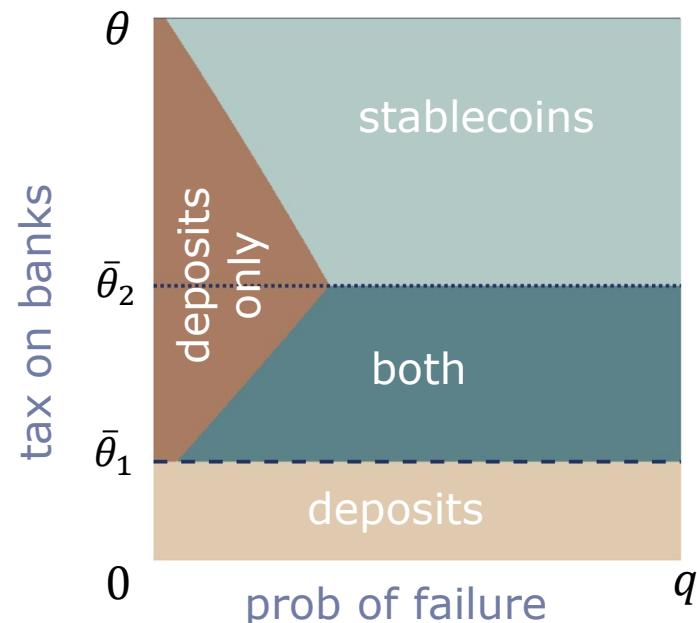
- ▶ Some people argue that money (deposits) should only be created by banks
 - ▶ who make loans to households, small businesses
 - ▶ allowing stablecoins limits credit to the real economy


**Bank of England Governor Warns Against Stablecoins,
Backs Tokenized Deposits Instead**

- ▶ Others argue that money should be backed by sound assets
 - ▶ credit can be provided in other ways; banks distort the allocation of credit
 - ▶ stablecoins are an opportunity to “get it right”
- ▶ What does our model say?
 - ▶ is it ever desirable to restrict who can issue tokenized money?

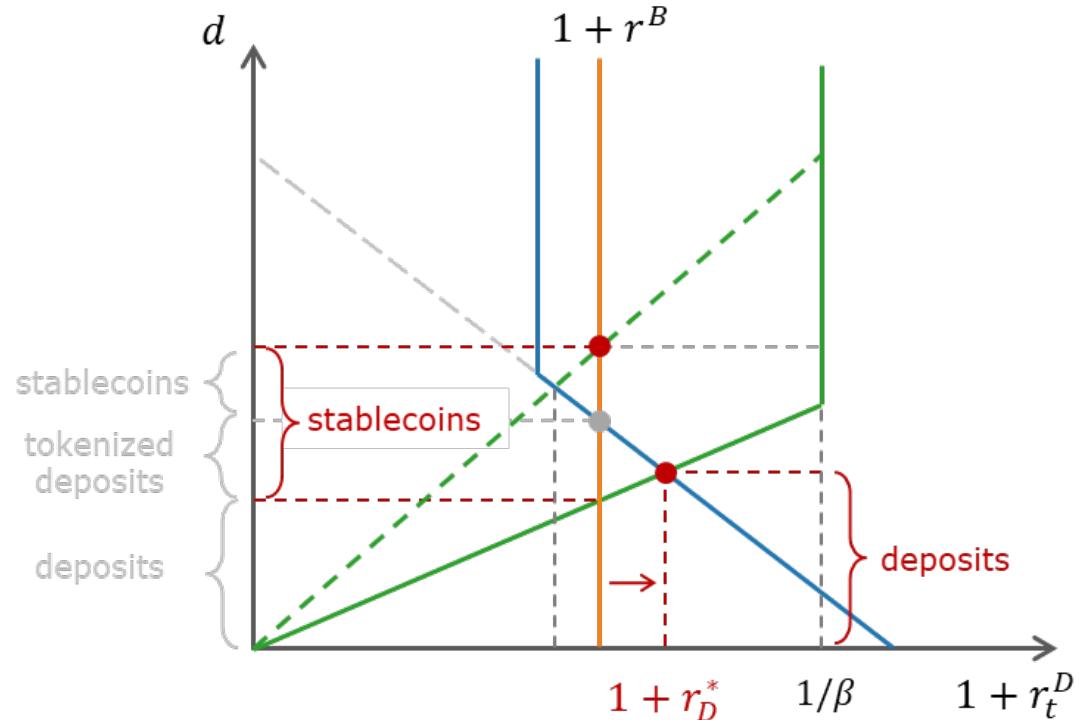
Tokenized deposits only

- ▶ Suppose a mix of deposits and stablecoins is used in equilibrium (middle case)
- ▶ If only banks can issue tokenized money:
 - ▶ the return on deposits $1 + r_D^*$ decreases
 - ▶ real money balances decrease; lower DM trade in all meetings (**bad**)
 - ▶ total bank deposits increase \Rightarrow more projects are funded
 - ▶ shift in funding from bonds to projects
- ▶ Is this good or bad?
 - ▶ answer depends (in part) on the social return of the marginal project $\hat{\gamma}$:


$$\rho(\hat{\gamma}^*) = (1 - q)(1 + \theta)(1 + r_D^*)$$

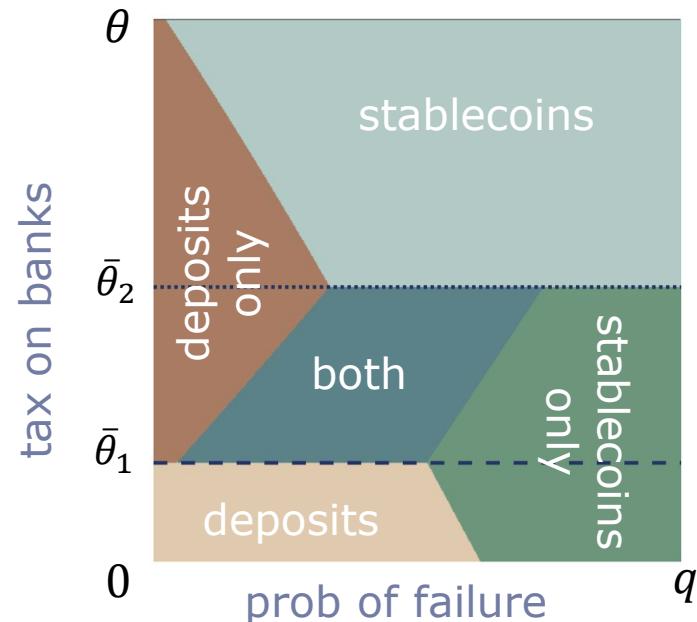
- ▶ Repeating: $\rho(\hat{\gamma}^*) = (1 - q)(1 + \theta)(1 + r_D^*)$

- ▶ When q is small and θ is large:


- ▶ banks face high funding costs, operate at small scale
- ▶ social return on the marginal product is high (can be $\gg 1 + r^B$)
- ▶ in these cases: prohibiting stablecoins can raise welfare

- ▶ Captures a common intuition:
 - ▶ narrow banks crowd out productive investment
 - ▶ But: crowding out is only bad if θ is large
 - ▶ if $\theta = 0$, banks tend to overinvest (as in Williamson, 2023, and others)
 - ▶ similar in spirit to Keister and Sanches (2023)

Stablecoins only


- ▶ If only stablecoins are allowed:
 - ▶ the return on stablecoins is unchanged (remains = $1 + r^B$)
 - ▶ DM crypto trade is unchanged
 - ▶ the return on deposits increases
 - ▶ traditional DM trade increases
 - ▶ \Rightarrow total DM trade increases (good)
 - ▶ downside: total deposits decrease
 - ▶ shift of funding from projects to bonds
- ▶ Is this good or bad?
 - ▶ again depends on: $\rho(\hat{\gamma}^*) = (1 - q)(1 + \theta)(1 + r_D^*)$

- ▶ Repeating: $\rho(\hat{\gamma}^*) = (1 - q)(1 + \theta)(1 + r_D^*)$

- ▶ When q is large and θ is small:

- ▶ significant moral hazard problem → banks overinvest in risky projects
- ▶ social return on the marginal product is low (can be $\ll 1 + r^B$)
- ▶ in these cases: requiring stablecoins to be used can raise welfare

- ▶ Can be optimal even if the marginal project has a higher return than bonds
 - ▶ because it raises the deposit rate
⇒ for the projects that are still operated ...
 - ▶ ... a higher fraction of return goes to depositors ...
 - ▶ ... which increases DM trade

Summarizing

- ▶ What assets do we want to back a new form of money?
- ▶ Might naively think: those with the highest return (among viable options)
 - ▶ allow different forms to compete → let the market decide
- ▶ Our model shows this answer is incorrect for two reasons (at least)
 - 1) Social returns are different from private returns
 - ▶ especially when there is deposit insurance, regulation
 - 2) A spillover effect on traditional markets
 - ▶ which assets are allowed to back the new money ...
 - ▶ ... affects the return depositors receive on traditional deposits

Spillover

- ▶ Requiring narrow banks in the tokenized sector:
 - ▶ decreases the total demand for bank liabilities
 - ▶ which raises the interest rate depositors receive (and ↓ banker's profits)
 - ▶ which results in more DM trade, can raise welfare
 - ▶ reminiscent of result in Chiu et. al (2023), Shao & Wang (yesterday), but with price-taking banks
- ▶ Note: this benefit is absent in the usual narrow banking debate
 - ▶ because that debate is about requiring all banks to be narrow
 - ▶ for example: Wallace (1996), Williamson (2024)
- ▶ A “limited” form of narrow banking is more desirable than full NB

Outline

1. Introduction
2. The model
3. Baseline equilibrium: a neutrality result
4. Equilibrium with risk and regulation
 - ▶ do crypto buyers use stablecoins or tokenized deposits?
5. Legal restrictions
 - ▶ should one be prohibited?
6. Conclusion

Summary

- ▶ The current debate about stablecoins vs. tokenized deposits ...
- ▶ ... is a form of the (old) narrow banking debate
 - ▶ but a particular (new, limited) form of this debate
- ▶ We present a simple model for organizing the discussion along one dimension
 - ▶ focusing on the liquidity premium and its effect on investment
- ▶ Some results are intuitive
 - ▶ if banks invest in too many risky projects → encourage stablecoins
 - ▶ if bank credit is scarce and funds high-return projects → ban stablecoins
- ▶ But also highlights an interesting spillover on traditional deposits
 - ▶ makes stablecoins (narrow banks) more attractive in limited form