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The Optimal Growth Problem

1 A “Robinson Crusoe” Model

We are going to start with what is in many ways a rather simple model. It is going to look nothing
like a model of a modern economy, for instance. Nevertheless, we are going to work through
this model completely, going over all the details of how to solve it. Some of this may already be
familiar to you, but I want you to go over it carefully because it is the foundation of everything
we will do in this course. In addition, we will see later that, by reinterpreting the variables in
the model and making a few minor changes, we can interpret the model as a representation of a
modern, market-based economy.

I am going to set up the model by telling a story about a family of people who live alone in a
very primitive environment. The goal of this analogy is to help you see very clearly what the
variables and the equations in the model mean, and to gain solid intuition for the solution. Once
we understand the model very well, we will see that different interpretations can be given to these
same equations. For now, we will talk about a person named Robinson Crusoe,1 who has been
shipwrecked with his family on a small, deserted island. The family will live in isolation on this
island forever.

• Crusoe and his descendants (the “Crusoe household” or “dynasty”) live alone on an island,
and will stay there forever

• Time is continuous, indexed by t ∈ [0,∞)

Think of the variable t as representing the date on a calendar. We will label the day that the family
arrives on the island as “date 0.” Measuring time as a continuous variable [using t ∈ [0,∞)] rather
than a discrete variable [using t = 0, 1, 2, . . .] is not very important. Writing the model in discrete
time leads to nearly identical results (but is somewhat messier and less elegant).

We are going to assume that the size of the Crusoe household grows over time, and that it grows at
a constant rate. To keep the story simple, we will often imagine that Crusoe arrives on the island
alone, so that the initial size of the household is one person. You might wonder how he could have
descendents in this case, but biology is not our concern here. This is a stylized representation of
how a group of people grows over time.

• Let N0 = number of people who arrive on the island (can imagine N0 = 1, ignoring biolog-
ical concerns)

• Let N (t) = number of people in the household at time t

• Assume N grows at rate n, so that

Ṅ (t)

N (t)
= n

1 Robinson Crusoe was the main character in a novel by Daniel Defoe, which was published in 1719. This book
is considered by many people to be the first true novel published in the English language. In the novel, Crusoe is
shipwrecked on an (almost) deserted island and lives there alone for 27 years. Our story will differ from the details in
the novel, of course. The novel is available online at http://www.bibliomania.com/0/0/17/31/frameset.html.
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or
N (t) = N0e

nt

A comment about notation: the variable N (t) is a single number; it denotes the number of people
who are alive on the island at time t. If we write N by itself, however, it represents an entire
function

N : [0,∞)→ R+,

that gives the number of people on the island at every point in time. We should always be careful
to distinguish between the number N (t) and the function N . This same notational convention will
apply to all of the variables in our model.

1.1 Technology

There is only one source of food on the island: coconuts. These coconuts grow on trees, and when
Crusoe arrives on the island, there are already some coconut trees there.

• The only source of food is coconuts

• When Crusoe arrives on the island, there are some coconut trees there

• A coconut can either be consumed or planted. If a coconut is planted “today”, it becomes a
new tree “tomorrow”

For intuition purposes, I will often talk about “today” and “tomorrow” as discrete events. This is
because the fundamental tradeoff in the model is between the present (consuming coconuts today)
and the future (planting trees that will yield coconuts at later dates). Because time is a continuous
variable, however, this use of the word “tomorrow” is not exactly correct. In the model, a coconut
that is planted instantly becomes a new (fully-grown) tree. Again, our goal here is not to deal with
biology (of people or of plants), but to set up an analogy that will help us understand and interpret
the mathematics of the model.

• Let K (t) = number of coconut trees on the island at time t

• Let K0 denote the number of trees when Crusoe arrives on the island

Throughout the course, it will be important to distinguish an upper-case letter K (t) from the
lower-case k (t). The number of trees on the island at time t is represented by an upper-case letter
K (t) . As with N , the letter K by itself will represent the function that tells us an entire path of
the variable K (t) over time.

The Crusoe household must harvest the coconuts from the trees before they can be either eaten or
planted. The number of coconuts that are harvested depends on both how many trees there are on
the island and how many people there are in the household to do the harvesting.

• The number of coconuts harvested when there are K (t) trees is

Y (t) = F (K (t) , N (t))
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We will call F the “harvest function” or the “production function.” We are assuming that all people
work a fixed number of hours per day; otherwise the number of hours worked would also be an
argument in the harvest function. We assume this function has certain properties (these should be
familiar from a microeconomics course).

• Assumptions on harvesting technology

(1) Constant Returns to Scale (homogeneous of degree one):

F (λK (t) , λN (t)) = λF (K (t) , N (t)) for any λ > 0

(2) Positive but diminishing marginal products:

∂F

∂K
> 0

∂2F

∂K2
< 0

∂F

∂N
> 0

∂2F

∂N2
< 0 for all (K (t) , N (t))

(3) Boundary (Inada) Conditions:

lim
K(t)→0

∂F

∂K
= ∞ = lim

N(t)→0
∂F

∂N

lim
K(t)→∞

∂F

∂K
= 0 = lim

N(t)→∞
∂F

∂N

Condition (1) comes from a replication argument: If there were twice as many trees and twice as
many people collecting coconuts, it seems natural to think that twice as many coconuts would be
collected. Condition (2) says (a) having either more trees or more people will always lead to a
larger harvest and (b) there are diminishing returns to the harvesting process. If you think about a
group of people collecting coconuts, these assumptions should seem very reasonable. Condition
(3) is technical in nature. As we will see later on, it guarantees that certain optimization problems
always have an interior solution.

To keep the model simple, we assume that all coconut trees are equally productive while they are
alive. However, at every point in time, some of the trees suddenly die. This implies that if Crusoe
and his family do not plant at least some trees, eventually the population of trees would completely
die out.

• In each period of time, a fraction δ of the existing trees dies

The interesting part of this story is how the decision Crusoe makes today – how many coconuts
to eat and how many to plant – affects the number of trees on the island and hence the number of
coconuts available to the family in the future. We already have all of the information about this
tradeoff; now I want to write it down in a compact way.

• Let C (t) = number of coconuts consumed at time t
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• Then we have

Y (t)− C (t)| {z } = δK (t)| {z }+ dK (t)

dt| {z }
1 : 2 3

where

1 = number of coconuts planted
2 = number of existing trees that die
3 = change in number of trees

The left-hand side of this equation is the number of coconuts that are harvested but not consumed;
this must be equal to the number of coconuts planted. The right-hand side says that each planted
coconut either replaces a tree that just died or becomes an increase in the total stock of trees. If the
number of coconuts planted is larger than the number of trees that died, the last term is positive and
the stock of trees will be growing over time. However, if the number of coconuts planted is smaller
than the number of trees that died, the last term is negative and the stock of tress is becoming
smaller over time.

• Using K̇ (t) to represent the derivative dK (t) /dt, we have

K̇ (t) = F (K (t) , N (t))− C (t)− δK (t) (RC)

This equation tells us how the stock of trees on the island evolves over time, given the consumption
decisions of Crusoe and his descendants at each point in time. We will refer to it as the “resource
constraint”, or (RC).

Let’s take a step back for a minute. Many of you are probably looking at this equation and
seeing something familiar. K (t) stands for capital, N (t) for labor, and this is a standard capital-
accumulation equation. Why am I telling you a silly story about Robinson Crusoe and coconuts?

The reason is that this simple story (hopefully) gives you an easy way to think about the model.
“Capital”, “investment”, and “output” are somewhat vague terms: What units are these measured
in? What exactly is “aggregate consumption”? We will get to these issues soon enough. In our
simple story, however, the units of all of the variables are perfectly clear. We can picture a coconut
very well, and we know that when you plant one coconut it will grow into one coconut tree. As
we work through the math and think about the intuition, it will be helpful to literally think about a
family living on an island full of coconut trees.

1.2 Intensive Form

It will also be helpful to talk about the harvest per person.

• Define
y (t) =

Y (t)

N (t)
harvest per person
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• Similarly

c (t) =
C (t)

N (t)
consumption per person

k (t) =
K (t)

N (t)
trees per person

In this last case, don’t think about each individual owning some trees. All of the trees on the island
belong to the entire family. We are just looking at the ratio of the total number of trees to the total
number of people collecting coconuts from them.

• We know
F (λK (t) , λN (t)) = λF (K (t) , N (t)) for any λ > 0

• Let λ = 1
N(t)

. Then

F (k (t) , 1) =
F (K (t) , N (t))

N (t)| {z } = y (t)

: harvest/person

This equation tells us something of fundamental importance: the variable y (t) depends only on
the variable k (t) , and not on the variables K (t) and N (t) independently. In other words:

• The harvest per worker depends only on the number of trees per worker.

I want to give this property a name so that we can refer to it later.

• Scale independence: When large and small economies are equally productive in per-capita
terms

Suppose we look at two separate island economies that are identical except for size: one island
has twice as many trees and twice as many people on it. If scale independence holds, the harvest
will be exactly twice as large on the larger island, so that the harvest per person is the same on
both islands. What we see here is that our Robinson Crusoe economy has the scale independence
property. This property will hold in some, but not all, of the models we see later in the course.

• Define the function
f (k (t)) ≡ F (k (t) , 1)

• This is the intensive harvest function.

The word ‘intensive’ means ‘per capita’ or ‘per person’. We could also call f the ‘per capita
harvest function’, but the term ‘intensive’ is more commonly used.
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It is important to keep in mind that the function F is something primitive – the relationship between
inputs and outputs in the harvesting process. It has two arguments: input of trees and input of
people. The function f , on the other hand, is just short-hand notation. Whenever we have arranged
things so that the level of the second input in F is equal to 1 (which will be very often) we will use
f just to avoid having to write “1” all of the time.

Using the properties of the total harvest function F given above, we can derive the properties of
the intensive harvest function f. I will leave it to you to verify the following

• Verify: The function f is continuous, strictly increasing, and strictly concave with

lim
k(t)→0

f 0 (k (t)) =∞ and lim
k(t)→∞

f 0 (k (t)) = 0

The scale independence property tells us that if we are interested in how many coconuts are
collected per person, we need to focus on the number of trees per person (rather than on the total
number of trees). Therefore, we would like to have some information about how the number of
trees per person evolves over time.

• Want: an equation for k̇ (t)

How can we get this information? Consider the following approach.

• Differentiate the definition of k (t) with respect to t

k̇ (t) =
d

dt

µ
K (t)

N (t)

¶
=

K̇ (t)N (t)−K (t) Ṅ (t)

N (t)2

=
K̇ (t)

N (t)
− nk (t)

• Substitute our equation for K̇ (t) into this expression

k̇ (t) =
F (K (t) , N (t))− C (t)− δK (t)

N (t)
− nk (t)

=
F (K (t) , N (t))

N (t)
− c (t)− (δ + n) k (t)

or
k̇ (t) = f (k (t))− c (t)− (δ + n) k (t) (rc)

This equation is the intensive form of the resource constraint (RC) above. It tells us how the stock
of trees per person evolves over time, depending on how many coconuts are consumed per person
at each point in time.

Notice that n enters this equation in exactly the same way as δ. Why? Recall that the variable we
are working with is k (t) = K (t) /N (t) , the ratio of trees to people. The parameter δ measures
the decrease in the numerator of this ratio due to the deaths of trees. The parameter n measure the
increase in the denominator of this ratio due to births in the family. Increasing the denominator
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has the same effect on a ratio as does decreasing the numerator (that is, they both make the ratio
smaller). For this reason, δ and n enter the equation that governs the evolution of trees per person
in the same way.

• Note: n (increases in the number of people) is “like” δ (decreases in number of trees).

• (δ + n) is the “effective depreciation rate” of the trees-per-person ratio

These steps we are going through now are very important. We are going to repeat them (in different
contexts, with different variables) many, many times during the course. If you have any doubts
about what we are doing, you should try to clear them up now.

1.3 Preferences

Figuring out how many coconuts the Crusoe household should consume and how many they should
plant at every point in time requires us to know their preferences over different consumption
streams. In a micro class, the way you typically construct preferences is by looking at different
pairs of consumption bundles and asking the consumer which one she prefers. This allows you to
draw indifference curves and to find a utility function to represent the preferences.

Here we will do the same thing. The first question is: What is a “consumption bundle” in our
setting? There is only one good (coconuts). We will always assume that people prefer eating more
coconuts to eating fewer. What else do we need to know?

We need to know how the household feels about present consumption versus future consumption.
The standard trick for dealing with dynamic models is to think of a good at different points in time
as different commodities. A coconut at t = 0 is one commodity, a coconut at t = 0.5 is a different
commodity, and so on. In other words, there are infinitely many commodities in our model, and a
consumption bundle is a function that specifies a quantity of each of these commodities. We need
to know the household’s preferences over these consumption bundles.

We are going to make an important assumption here: everyone within the household agrees about
what is best for the whole group. That is, this is not a group of greedy people, each of whom is
trying to get more for him or herself. Rather, this is a big, happy family where people like to share
things equally. In other words, I want you to literally think of this household as a family and not,
say, as the population of an entire country.

• Assume: consumption is shared equally

• each person consumes c (t) = C(t)
N(t)

at time t

What the members of the household care about, therefore, is the variable c (t) and how it behaves
over time. In other words, they care about the function c : [0,∞)→ R+.

• Consider
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ln(c)

t

c1

0

c2

• c1 and c2 are consumption plans

• we need to know which one the family prefers

Think again about the exercise you would do in a micro class; you would ask a person if she prefers
to consume one orange and two apples or two oranges and one apple. The person would tell you
which bundle she prefers, and this answer gives you information about her preferences. The same
reasoning applies here. We are going to ask Crusoe if he would prefer the consumption plan c1 or
the plan c2 for his family. In fact, we want to imagine asking this question about all possible pairs of
all conceivable consumption plans . These answers would give us Crusoe’s complete preferences,
from which we could construct his utility function. More precisely, if we let C denote the set of all
possible consumption plans,

• we want a functional
U : C→ R

U is like a standard utility function; it takes each possible consumption “bundle” and assigns a
number to it. The only difference from the standard micro situation is that a consumption bundle
is now a function c (a level of consumption at every point in time) instead of a vector. Because
U operates on functions (instead of vectors) is called a “functional” (instead of a “function”). We
will put a lot of structure on this U functional by constructing it in the following way.

• Let u [c (t)] = utility one person gets from consuming c (t) coconuts

• assume

u0 (c (t)) > 0, u00 (c (t)) < 0 for all c (t) , and
lim

c(t)→0
u0 (c (t)) = ∞, lim

c(t)→∞
u0 (c (t)) = 0

The first two assumptions are standard: consuming more is better, but there is diminishing marginal
utility of consumption. The last two are technical conditions to ensure that the solution to the utility
maximization problem is always interior.
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The important thing is how the Crusoe household compares, or “adds up”, these utilities across
time. That is, how much weight is given to consumption today and how much weight is given to
consumption in the future?

Imagine that Crusoe has just arrived on the island and collected his first batch of coconuts. He is
thinking about how many of these coconuts should be planted and how many should be consumed.
He does some calculations and figures out that the plans c1 and c2 above are both feasible. He needs
to decide whether he wants to consume more today (and therefore plant fewer trees and consume
less in the future – plan c1) or consume less today (and therefore plant more tress and consume
more in the future – plan c2).

We will assume that there are two effects here. First, he is impatient. Crusoe (and all of his
descendants) care more about the present than about the future. We will assume that this impatience
takes a particular form:

(1) Exponential discounting (impatience)

• utility at time t is weighted by e−ρt, where ρ > 0 is the discount rate

weight

t0

1

Second, Crusoe realizes that if n > 0, future generations will be larger than the present generation,
and he gives future generations more weight because of that. In other words, when he looks at
c (0) , he realizes that this is the consumption of one person – himself. However, when he looks at
c (t) in the distant future, he realizes that a lot of people will be receiving that number of coconuts
each (remember that c (t) measures consumption per person), and as a result he cares more about
the value of c (t).

(2) Size-based weights

• utility at time t is also weighted by the number of people receiving it, N (t)

• recall N (t) = N0e
nt

The number u [c (t)] tells us how happy each person in the household will be at time t if a certain
consumption plan is followed. When Crusoe is laying out his plan on the first day, he gives this
level of happiness a certain weight (or importance) based on (i) how far away it is, and (ii) how
many people will receive it.
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⇒Weighted utility at time t is

u [c (t)] e−ρtN0e
nt

= N0u [c (t)] e
−(ρ−n)t

• Assume: ρ > n

For the objective function to be well-defined, we need for Crusoe to place more weight on current
consumption than on future consumption. Future generations automatically get more weight
because they will be larger, so we need the discount rate to be large enough to more than offset
this effect. One piece of evidence in favor of this assumption is that interest rates in the real world
are almost always positive: future consumption is cheaper than current consumption. This seems
to imply that decision makers do indeed place more weight on current consumption than on future
consumption.

• Total utility of the household is

N0

Z ∞

0

u [c (t)] e−(ρ−n)tdt ≡ U {just adding up all of the weighted utilities}
or R∞

0
u [c (t)] e−(ρ−n)tdt

This is our functional U . Given any possible consumption plan c, we plug it into this expression,
do the integration, and we get a number telling us how well the Crusoe household likes that plan.

Keep in mind that we are making a lot of assumptions here. There is no reason that Crusoe’s
preferences must be of this form. Any functional U : C→ R satisfying certain properties
could represent his preferences. However, we will see that this particular function has some nice
properties that will be very useful for us. In addition, it seems to be “reasonable”.

1.4 Feasible consumption plans

Now that we know Crusoe’s preferences over consumption plans, we need to determine what
consumption plans are actually possible, or feasible, for him and his family to follow. The set of
feasible plans will obviously depend on the initial stock of trees on the island and on the harvesting
technology described above.

• Definition: A consumption plan c is feasible from k0 if there exists a function k such that

(i) k (0) = k0

(ii) k (t) ≥ 0 for all t, and
(iii) k̇ (t) = f (k (t))− c (t)− (δ + n) k (t) for all t

In other words, imagine trying to follow the plan c, starting at t = 0. We know the initial number
of trees per person is equal to k0. We also know that a fraction δ of the trees will die and that the
number of people in the family will increase by a fraction n. Therefore, there will be a “loss” in
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the number of trees per person equal to (δ + n) k0. The number of new trees planted per person
will be f (k (0))− c (0) ; this is just the number of coconuts per person that are harvested but not
eaten. The resource constraint (iii) then allows us to calculate k̇ (0) , the net change in the number
of trees at t = 0, which tells us how the stock of trees is changing at that time.

From this point, we can simply follow the plan forward, using the consumption decision at each
point in time to determine how the stock of trees is evolving. If we can follow the plan c and the
stock of trees remains positive at all points in time, then c is feasible. However, if following c
would lead to a negative number of trees at any point in time, the plan is clearly not feasible. If we
imagine doing this exercise for every conceivable plan c ∈ C, we will find the set of consumption
plans that are actually feasible for the Crusoe household to follow.

One might want to include another constraint on the set of feasible consumption plans: the number
of coconuts consumed at time t cannot be larger than the harvest, or

c (t) ≤ f (k (t)) for all t.

If a consumption plan violates this constraint for some t, it would be telling Crusoe to eat more
coconuts than are available, which certainly seems infeasible. However, we are going to ignore
this constraint. We will see below that the solution we derive will typically satisfy the constraint,
and hence it does not matter whether or not we include it in the analysis.2

Now, the exercise we want to do is the following. Suppose Crusoe has just arrived on the island
and he wants to know what he should do. He tells us his preferences over consumption plans, and
our goal is to tell him which plan is the best one for his family to follow. That is, we want to set up
a utility maximization problem and find the solution.

1.5 The optimal growth problem

We now have the necessary ingredients to write down the problem we want to solve. We simply
want to find the consumption plan that maximizes Crusoe’s utility function, subject to the constraint
that the consumption plan be feasible. We are going to call this utility-maximization problem the
“optimal growth problem,” because its solution will tell Crusoe the optimal way for his stock of
trees to grow (or possibly shrink) over time. The problem is also called the “social planner’s
problem”; it is as if Crusoe has asked us to write down the best plan for his island society. The
maximization problem is as follows.

2 In general, whether or not this constraint should be included in a model depends on whether or not investmest
is viewed as being reversible. Investment is said to be reversible if the capital stock can be converted back into
consumption goods and irreversible if it cannot. In our analogy of trees and coconuts, investment is clearly
irreversible: once a coconut is planted and becomes into a tree, it is impossible to turn the tree back into a coconut
and eat it. In other environments, however, investment is more reversible (perhaps some machinery can be used
for consumption purposes). For studying issues related to economic growth, whether investment is assumed to be
reversible or irreversible typically makes no difference in the predictions of the model. For other issues, such as
business cycle analysis, it is much more important.
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• Optimal growth problem :

max
{c}

Z ∞

0

u [c (t)] e−(p−n)tdt (OGP)

subject to

k̇ (t) = f (k (t))− c (t)− (δ + n) k (t)

k (0) = k0 and
k (t) , c (t) ≥ 0 for all t.

This is the problem Crusoe faces the moment he arrives on the island. Notice that solving the
problem involves working out a plan for the entire future. In other words, deciding how many
coconuts should be consumed and how many should be planted on the very first day requires us to
know how many should be consumed/planted at every point in the future as well. Fortunately, we
only need to solve the problem once. Since all of Crusoe’s descendants have the same preferences
as he does, the solution to (OGP) will also be the best plan for them to follow when the time comes.

This is a constrained maximization problem, where we need to choose a value c (t) for every point
in time. In other words, there is an infinite number of choices to be made here, which is what
makes this problem difficult. The important question now is how we can solve a problem like this.

2 The Hamiltonian Method:

There are different approaches one can take to this problem. I am going to present the Hamiltonian
method. We can think of this as a dynamic version of the standard Lagrangian method that you use
to solve static optimization problems with equality constraints. First I will present the steps needed
to solve a general class of problems that includes (OGP) as a special case. You can think of these
steps as a “recipe” that can be followed to solve problems. Then I will spend a fair amount of time
deriving some exact intuition for these steps, so that we understand fully how this recipe works.

2.1 A 3-step recipe

• Consider the (more general) problem:

max
{c}

Z ∞

0

v [k (t) , c (t) , t] dt

subject to

k̇ (t) = g [k (t) , c (t) , t]

k (0) = k0 and
k (t) , c (t) ≥ 0 for all t
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Notice that the optimal growth problem does indeed fit into this general form, by setting3

v [k (t) , c (t) , t] = u [c (t)] e−(p−n)t

and
g [k (t) , c (t) , t] = f (k (t))− c (t)− (δ + n) k (t) .

There are two types of variables in this problem, called “state” variables and “control” (or “choice”)
variables. It is always important to know which of these categories each variable falls into.

• Definition: The value of a state variable at time t is completely determined by decisions
made before t. A variable that is not a state variable is a control (or choice) variable.

At any point in time, the number of trees on the island is not something that Crusoe can choose.
This number is determined entirely by how many trees he planted in the past (and how many trees
were on the island when he arrived). Therefore k (t) is a state variable. On the other hand, once
the coconuts have been harvested, the number of coconuts that are consumed is a choice that can
be made today. Hence c (t) is a control variable.

• Here:

• state variable: k (t)

• control variable: c (t)

We are now ready to go through the 3 steps of the recipe.

• Step 1: Construct the Hamiltonian function

H = v [k (t) , c (t) , t]| {z }+µ (t)|{z} g [k (t) , c (t) , t]| {z }
: 1 2 3

1: objective function at time t

2: multiplier

3: “constraint” at time t ( transition function )

• Step 2: Take the first-order conditions (FOC)

(a)
∂H (t)

∂c (t)
= 0, (b)

∂H (t)

∂k (t)
= −µ̇ (t) , (c)

∂H (t)

∂µ (t)
= k̇ (t)

The first-order conditions are some derivatives of the Hamiltonian function. We will see why
these are the relevant derivatives soon. First, though, we will need one other piece of information.
Notice that the second FOC is a differential equation for µ. To solve this, we will need a boundary
condition.

3 The general form has some features that are not present in the optimal growth problem. In particualr, the variable
k (t) may appear in the objective function, and the variable t may appear independently in the constraint. These
features are not needed now, but will be useful later in the course.
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• Step 3: Write the transversality condition (TVC)

lim
t→∞

[µ (t) k (t)] = 0

These are necessary conditions for a solution of our problem. We will not worry about sufficient
conditions. We will see later that only one consumption plans satisfies these conditions, and hence
this plan must be the solution to the problem.

If we apply these formulas to our optimal growth problem, we get

H = u [c (t)] e−(p−n)t + µ (t) [f (k (t))− c (t)− (δ + n) k (t)]
FOC:

u0 (c (t)) e−(p−n)t − µ (t) = 0 (a)
µ (t) [f 0 (k (t))− (δ + n)] = −µ̇ (t) (b)

f (k (t))− c (t)− (δ + n) k (t) = k̇ (t) (resource constraint) (c)

TVC:
lim
t→∞

µ (t) k (t) = 0

This recipe is fairly easy to remember and straightforward to apply. Now we are going to dig a little
deeper and see that the equations (a)− (c) also have very interesting economic interpretations.

2.2 Intuition for the Hamiltonian approach

I do not want the equations above to be just some formulas that you memorize; I want to make sure
that we really understand the economics behind these equations.

• Want the economic intuition for:

• the multiplier µ (t)

• condition (a)

• the function H (t)

• condition (b)

Condition (c) is just the resource constraint, which we already understand. We will look at the
intuition for the transversality condition later.

2.2.1 Understanding the multiplier µ (t)

The economic interpretation multiplier µ (t) is critical for understanding all of the other conditions.
This multiplier equals the marginal value of a tree at time t to Crusoe, measured from the point of
view of t = 0. To see exactly what this means, we need to set up some new notation.
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• Let

V (k0) = max
{c}

Z ∞

0

u [c (t)] e−(p−n)tdt

subject to

k̇ (t) = f (k (t))− c (t)− (δ + n) k (t)

k (0) = k0

k (t) , c (t) ≥ 0 for all t

That is, V (k0) is the utility value of the solution to our maximization problem. Of course, we don’t
know what this solution is yet. All we are saying here is that there is a solution, and let’s call the
value of this solution V.

• More generally, for any t ≥ 0, let

V (k (t) , t) = max
{c}

Z ∞

t

u [c (s)] e−(p−s)tds

subject to

k̇ (s) = f (k (s))− c (s)− (δ + n) k (s)

k (t) = kt

k (s) , c (s) ≥ 0 for all s ≥ t

Here we are choosing some point in time t and ignoring everything that happens before t. Suppose
Crusoe finds himself at time t with k (t) trees. What is the best he can do from that point onwards?
Call the utility value of this best plan V (k (t) , t).

Now let’s focus on a very short interval of time.

• Consider [t, t+4] for4 small

Suppose that on this entire interval, a fixed consumption level c̄ must be chosen. This is only an
approximation, of course. The number of coconuts consumed can be different at each point in
time. Our approach is going to be to make this approximation, and then to take the limit as ∆ goes
to zero, so that the approximation becomes exactly correct.

• The following equation must then hold :

maximal value from = benefit from + value of starting tomorrow
k (t) trees today : consumption today with k (t+4)z }| {

V (k (t) , t) = max
{c̄}
{
z }| {
u [c̄] e−(p−n)t4+

z }| {
V

µ
k (t+4)| {z }, t+4

¶
}

: depends implicitly on c̄

This expression says that the way to get the highest possible utility starting at time t is to make the

17



T. Keister: Notes on Economic Growth

best consumption decision today (c̄) and then to get the highest possible utility starting tomorrow
(at time t+∆). This is true by definition.

Let’s step back for a minute. What are we trying to do here? We have a problem in which we need
to make an infinite number of choices – how much to consume at each point in time. What we are
trying to do is make these choices one at a time, by just looking at how much should be consumed
today. We do this by grouping all of the points in time after today together and call them “the
future” (or “tomorrow”). Then in making today’s decision, we only need to look at (1) the benefit
of consuming today, and (2) the effect consumption today has on the future. The optimal choice
of c̄ is the one that properly balances these two concerns.

• Take the FOC for this problem

u0 [c̄] e−(p−n)t4| {z }+ ∂

∂k
V (k (t+4) , t+4)| {z } ∂k (t+∆)

∂c̄| {z } = 0 (F)

1 2 3 :

1 = marginal benefit of consuming a coconut today
2 = loss in future utility if there is one less tree
3 = decrease in future trees caused by consuming one more coconut today

2 · 3 = loss in future utility caused by consuming one more coconut today

Q: What is ∂k(t+∆)
∂c̄

?

In other words, how are future values of k (t) affected by today’s consumption choice? The fact
that we are working with a very simple environment (with only trees and coconuts) should help us
understand the answer. First, let’s go through some mathematics.

A: Begin with the following linear approximation

k (t+∆) ≈ k (t) + k̇ (t)4 (for small4 )
⇒

∂k (t+∆)

∂c̄
≈ 4∂k̇ (t)

∂c̄

Keep in mind that we are using c̄ to denote the level of consumption on the whole interval
[t, t+∆] . Therefore c (t) is equal to c̄, and we can replace c (t) in the resource constraint by
c̄.

• Using the resource constraint

k̇ (t) = f (k (t))− c̄− (δ + n) k (t)

we have
∂k̇ (t)

∂c̄
= −1
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• Therefore
∂k (t+∆)

∂c̄
= −∆.

The intuition behind these equations is very simple. If you consume one more coconut today, you
will have one less tree tomorrow. If you continue this extra consumption for a period of time with
length4, the total decline in the number of trees is one multiplied by4.

Next, substitute this result into the first-order condition (F) that we derived above.

• FOC is now:
u0 [c̄] e−(p−n)t4− ∂

∂k
V (k (t+4) , t+ δ)4 = 0

• Cancel out the ∆ term, and then let ∆→ 0. With ∆ = 0, we can replace c̄ with c (t)

u0 [c (t)] e−(p−n)t − ∂

∂k
V (k (t) , t) = 0 for any t ≥ 0

• Comparing this with condition (a), we see that

µ (t)= ∂
∂k
V (k (t) , t)

This gives us an interpretation of µ (t) . We defined the variable V (k (t) , t) to be the utility value
of having k (t) trees at time t. Our calculations have shown that the multiplier µ (t) is exactly equal
to the derivative of this V function with respect to its first argument. In other words, µ (t)measures
the amount by which total utility could be increased if Crusoe were given one more tree at time t.

• We have shown

µ (t) = marginal value of a tree at time t
= amount by which total utilityZ ∞

0

u [c (t)] e−(p−n)tdt

could be increased if Crusoe had one more tree at t

Notice this is just like in a static optimization problem: the multiplier is the shadow value of the
resource constraint. We are going to use this interpretation repeatedly.

This was our first goal: understanding the meaning of the multiplier µ (t). Next we want to
understand the meaning of the first-order condition (a) .

2.2.2 Understanding condition (a)

Our approach above was to turn a dynamic optimization problem into a series of static problems by
using the V function to measure the value of trees. Let’s look at what we did a little more carefully.
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• Recall
V (k (t) , t) = max

{c̄}
{u [c̄] e−(p−n)t4+ V (k (t+4) , t+4)}

The right-hand side of this equation is an easy maximization problem involving only one variable
(c̄). Once we know the utility value of a tree, the problem of choosing how many coconuts to
consume and how many to plant becomes a standard, static problem from microeconomics. Utility
is defined over two goods (consumption today and trees tomorrow), and the decision maker faces a
tradeoff between these goods. In other words, the function V allows us to draw indifference curves
between coconuts consumed today and future trees, as in the following picture.4

trees
at t+∆

coconuts
consumed
on (t,t+∆)

slope = -∆

f(k(t))

k(t) - ∆(δ+n)k(t)

Condition (a) is simply the first-order condition for this (easy) optimization problem.

• Condition (a) says

u0 (c (t)) e−(p−n)t| {z } = µ (t)|{z}
marginal utility of c (t) = marginal utility of k (t)

• notice that both terms are discounted to t = 0

• Optimality requires that the consumption–planting decision be such that, at the margin, Cru-
soe is indifferent between eating a coconut and planting it

2.2.3 Economic interpretation of the Hamiltonian function

The value H (t) also has an important economic interpretation. To see it, we need to focus on what
I will call the “net harvest” at time t.

• Define the net harvest (per person) at time t to be y (t)− (δ + n) k (t)

4 When looking at this picture, it is important to keep in mind that we are not saying that Crusoe gets utility from
the trees directly. The utility of a tree at time t comes indirectly, from the coconuts that will be consumed from the
tree in the future. This indirect utility is what the function V captures.
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From the total harvest, we subtract enough coconuts to replace the trees that have just died and to
have new trees for the new members of the household. This remaining “net” harvest can either be
consumed or used to increase the stock of trees per person.

• Then
net harvest = consumption+ increase in total stock of trees

or
f (k (t))− (δ + n) k (t) = c (t) + k̇ (t)

This last equation is just the resource constraint (rc) written in a different order. Once Crusoe has
decided how much of the net harvest will be consumed and how much will become new trees, we
can ask:

Q: What is the utility the Crusoe household gets from the net harvest? (discounted to t = 0)

To answer this question, we need to add together the utility from current consumption and the
utility from the future consumption made possible by increasing the number of trees. We know
from above that, at the margin, a new tree is worth µ (t) in terms of utility at t = 0. Therefore, the
utility from having k̇ (t) more trees is equal to the product µ (t) k̇ (t).5 The answer to the question
is then:

A: Add the two benefits together

: u [c (t)] e−(ρ−n)t + µ (t) k̇ (t)

= u [c (t)] e−(ρ−n)t + µ (t) [f (k (t))− c (t)− (δ + n) k (t)]

= H (t) {The Hamiltonian function}

In words, we have shown that the Hamiltonian function measures the utility that the household
receives from the current net harvest. It combines the current benefit from consuming with the
future benefit from planting new trees.

This interpretation gives us another way of looking at condition (a). When we decide how to divide
today’s net output into consumption and planting, we should clearly do it in a way that maximizes
the total utility from this output. In other words, c (t) should be chosen to maximize the value of
H (t) . This is exactly what condition (a) says to do.

• Another view of condition (a) : choose c (t) to maximize H (t)

⇒ ∂H (t)

∂c (t)
= 0

It almost seems like we should be done. The only choice we need to make is how many coconuts
to consume at each point in time. We have an equation telling us how to do that. Why do we need
anything else?

5 More precisely, this product is a linear approximation of the value, because µ (t) is the derivative of the indirect
utility function V . Because we are looking at a single instant of time, the linear approximation will be exactly correct.
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The problem is this: we have introduced the new variable µ (t) . That is, we said that if we knew the
utility value of a tree at every point in time, we would know how to make the consumption-planting
decision. However, we do not yet know anything about this variable µ (t) . Condition (b) gives us
this information.

2.2.4 Interpreting Condition (b)

Condition (b) is a differential equation for the variable µ; it tells us how the marginal value of a tree
changes over time. To see the intuition behind this condition, we need to go back to our equation
relating the value of a tree today to the value of a tree tomorrow.

• Recall
V (k (t) , t) = max

{c̄}
{u [c̄] e−(p−n)t4+ V (k (t+4) , t+4)}

Suppose we hold the level of consumption c̄ fixed and just focus on the variables k (t) and
k (t+∆) . The equation above tells us about the relationship between the utility value of the stock
of trees today and the utility value of the stock of trees tomorrow. What we want to know is the
relationship between the marginal utility of trees today and the marginal utility of trees tomorrow.
Recall that µ (t) is a derivative of the V function, so we can

• Differentiate both sides with respect to k (t) , holding c̄ fixed

∂

∂k
V (k (t) , t) = 0 +

∂

∂k
V (k (t+4) , t+4) dk (t+4)

dk (t)
or

µ (t) = µ (t+4) dk (t+4)
dk (t)

(¨)

We can interpret this equation as saying

marginal utility today = marginal utility tomorrow× a rate of transformation.

We can also rearrange the terms as follows.

• Or
µ (t)

µ (t+4) =
dk (t+4)
dk (t)

What does this condition say? The left-hand side is a ratio of marginal utilities, which is a marginal
rate of substitution (MRS). The right-hand side is a marginal rate of transformation (MRT). In other
words, this condition tells us that when we consider the two commodities “trees today” and “trees
tomorrow”, the standard MRS=MRT condition must hold.

It might seem a little bit odd to talk about a marginal rate of substitution for trees (instead of
for consumption), but remember what the function V and the variable µ are. They measure the
(indirect) utility value of trees. Using their values, we could draw an indifference curve for trees
today and trees tomorrow. The equation above just tells us that if we are doing things correctly,
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the slope of this indifference curve should be equal to the rate at which a tree today can be used to
create a tree tomorrow.

It turns out that this equation is equivalent to condition (b). Seeing this requires a little bit of
algebra. First, we need to determine what the marginal rate of substitution between k (t) and
k (t+∆) is.

• Take the linear approximation

k (t+4) ≈ k (t) + k̇ (t)4 {for4 small}
⇒

∂k (t+4)
∂k (t)

= 1 +4 [f 0 (k (t))− (δ + n)]

Notice what this last equation tells us: the marginal rate of transformation is not equal to one (as we
might have naively expected). In other words, one tree today does not create one tree tomorrow.
For one thing, trees sometimes die, so having one tree today would give you less than one tree
tomorrow. There is also the issue of the new members of the household. However, the tree today
also produces coconuts, which can be planted to yield trees tomorrow. How many coconuts does
a tree today give? Well, for the marginal rate of transformation what matters is the last (marginal)
tree, which gives f 0 (k (t)) coconuts. Therefore one tree (per capita) today generates one tree (per
capita) tomorrow minus (δ + n) “depreciated” trees plus f 0 (k (t)) new trees.

• Also take the linear approximation

µ (t+4) ≈ µ (t) + µ̇ (t)4

Substituting these conditions into equation (¨) from above,

• Then we have:

µ (t) = [µ (t) +4µ̇ (t)] [1 +4 (f 0 (k (t))− (δ + n))]

µ (t) = µ (t) + µ (t)4 [f 0 (k (t))− (δ + n)] +4µ̇ (t) +42 (. . .)

Since we are considering small values of ∆, the last term (which has ∆2 in it) will disappear. For
this reason I did not write the term out, leaving just (...) instead. Now, cancel out the first µ (t)
term on each side, and then divide through by ∆

0 = µ (t) [f 0 (k (t))− (δ + n)] + µ̇ (t) +4 (. . .)
let4→ 0

µ (t) [f 0 (k (t))− δ] = −µ̇ (t)
⇒ condition (b)

These calculations therefore show what I claimed above: condition (b) can be thought of as simply
an intertemporal MRS=MRT condition for trees. We can also write the condition as follows.
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• Or

µ̇ (t)

µ (t)|{z} = − [f 0 (k (t))− (δ + n)]| {z }
growth rate of the value of a tree = (net) marginal rate of transformation

We can think of the growth rate of µ as the “instantaneous” marginal rate of substitution between
trees today and trees tomorrow (as4→ 0).

• Summary so far:

H (t) = total benefit from the net harvest at t

(a) :
∂H (t)

∂c (t)
= 0 ⇒ static MRS=MRT for consumption-planting decision

(b) :
∂H (t)

∂k (t)
= −µ̇ (t) ⇒ dynamic MRS=MRT for trees

(c) :
∂H (t)

∂µ (t)
= k̇ (t)⇒ constraint (transition function).

One way to think of what we have done so far is the following. We said that if we knew how
to assign a value to trees, the consumption-planting decision at each point in time is an easy,
static optimization problem whose first-order condition is (a). The question then becomes how we
should assign the value of trees. Condition (b) says that we need to assign these values so that the
intertemporal MRS=MRT condition holds at every point in time. Now let’s take these equations
and try to solve them to see what the complete functions k and c will look like.

2.3 Working with the FOC

I am going to use a specific utility function here to simplify the algebra. I will also assume that the
Crusoe household does not increase in size over time.

• Assume:

u (c) = ln (c)

n = 0

In the first Problem Set, you will solve these equations with n > 0 and using a different utility
function. This problem set is very important, because we are going to use that utility function in
the remainder of the course.
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• Then the FOC are given by

1

c (t)
e−ρt = µ (t) (a)

− µ̇ (t)
µ (t)

= f 0 (k (t))− δ (b)

k̇ (t) = f (k (t))− c (t)− δk (t) (c)

• Thus we have

(a) ⇒ relationship between c (t) and µ (t)

(b) ⇒ differential equation for µ
(c) ⇒ differential equation for k

So this is a 2-dimensional system of differential equations, and we need to find the solution. We
have 3 variables here, but we can to use condition (a) to eliminate one of them. One option would
be to solve (a) for c (t), and plug this solution into equation (c). It turns out to be more useful to
solve (a) for µ (t) and plug the result into equation (b). Either of these approaches would lead to
the same answer, of course, but we will always follow the latter.

(a) ⇒ µ (t) =
1

c (t)
e−ρt

• Take logs and differentiate with respect to t

ln (µ(t)) = − ln (c(t))− ρt

or
µ̇ (t)

µ (t)
= − ċ (t)

c (t)
− ρ

or
− µ̇ (t)
µ (t)

=
ċ (t)

c (t)
+ ρ

Here the we see that the instantaneous marginal rate of substitution for consumption is linked to
the marginal rate of substitution for trees. They differ in the discount factor. We will see some
intuition for this relationship later.

We are going to follow the procedure of taking logs and differentiating throughout the course. If
you are a little rusty on the rules associated with the natural logarithm (for example, ln (xy) =??),
I recommend that you brush up on them now.

• Substitute this into (b) :

ċ (t)

c (t)
= f 0 (k (t))− δ − ρ

or
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ċ (t) = [f 0 (k (t))− δ − ρ] c (t) (1)
k̇ (t) = f (k (t))− c (t)− δk (t) (2)

This is a system of ordinary differential equations. The word ‘ordinary’ here just means that all of
the derivatives are with respect to the same variable: time.

Remember our goal: we want to give Crusoe a plan that tells him how many coconuts should
be consumed at each point in time. That plan is a function c. The first-order conditions for
Hamiltonian method did not give us the function, but it did give us some information about it.
In particular, we have a differential equation that tells us how this level of consumption should
evolve over time. However, this equation depends on the number of trees and how that number
evolves over time. Therefore, in order to get our answer (the function c), we need to study how the
optimal consumption of coconuts and the optimal number of trees evolve together over time. That
is what these two differential equations tell us.

3 Finding the Solution

The next question is how we can analyze this system of equations. In general, the analysis of
differential equations can be done using graphical, analytical, or numerical methods. We will use
primarily graphical methods in this course.

3.1 The phase diagram

Our approach will be based on the phase diagram. When I draw a phase diagram, I always go
through the following steps. First, we draw the phase plane, the set of all possible values for the
variables k and c. Since we know the the number of coconuts consumed and the number of trees
on the island are both non-negative numbers, the relevant part of the phase plane for our problem
is the non-negative orthant.

For each point in the phase plane, the differential equations specify a direction of movement (either
k and c are both increasing, or both decreasing, or one is increasing and the other decreasing). We
want to know what the direction of movement is at each point. To do this, we will begin by looking
at special sets of points, where one of the variables is neither increasing nor decreasing.

• Definition: An isocline is a set of points in the phase plane where one of the variables is
unchanging. In our system, the isoclines are where ċ = 0 and where k̇ = 0 hold.

Our method for drawing the phase diagram consists of four steps, two each for the variables c and
k. We begin with the variable c.

• Step (1): Find the isocline(s) for c. That is, where is ċ = 0 ?

• For ċ to be zero we need either c = 0 or

f 0 (k (t)) = δ + ρ → Solution : k∗
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Because the intensive harvest function f is strictly concave, there is only one value of k such that
the marginal productivity of trees is equal to (δ + ρ) . Let’s call that value k∗. The isoclines for c
are therefore the horizontal axis and a vertical line at the value k∗.6

• Step (2): Classify the dynamics of c, drawing arrows (up and down)

The vertical isocline has divided the phase plane into two regions. The variable c is rising in one of
these regions and falling in the other. We need to figure out which region is which. We do this by
picking any one point and then asking: if we are at that point, would c be increasing or decreasing?
Start with a point to the left of k∗ in the figure below. We know that at k∗,

f 0 (k∗)− δ − ρ = 0

holds. Since f is concave, decreasing k will raise f 0 (k) . For any value of k below k∗, therefore,
we must have

f 0 (k (t))− δ − ρ > 0

and thus ċ > 0 holds and c will be growing. At a couple of points to the left of k∗, we draw an
arrow pointing upwards, as in the figure. For values of k greater than k∗, on the other hand,

f 0 (k (t))− δ − ρ < 0

holds, and therefore at these points the level of c will be falling. For a couple of such points, we
draw an arrow pointing downward, as in the figure.

k

c
c = 0

k= 0

k*

c*

c = 0

k

Now we repeat these two steps, but focusing on the variable k.

6 With log utility, c (t) cannot be zero (because the log of zero is undefined). To be precise, therefore, our our phase
diagram should not contain the c = 0 axis. However, the utility function that you will use in the first problem set (and
that we will use in the remaineder of the course) is defined for c (t) = 0, at least for some parameter values. For this
reason, I have chosen to include the axis in the diagram here. We shall see that including or excluding this axis makes
no difference in the analysis.
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• Step (3): Find the isocline(s) for k. That is, where is k̇ = 0 ?

c = f (k)− δk

This equation is easy to understand: k̇ is zero when consumption is equal to all of the net harvest
(recall that we have set n = 0). We need to draw this curve on our phase diagram. When k is zero,
the value of c corresponding to this curve is also zero, and hence the curve starts at the origin. The
strict concavity of the function f implies that this curve is strictly concave. The curve reaches a
maximum where f 0 (k) = δ holds and then decreases until it reaches the horizontal axis. Let’s call
the point where it hits the axis k̄. Note that the maximum of this curve (where f 0 (k) = δ holds) is
necessarily to the right of k∗ (where f 0 (k) = δ + ρ holds)

• Step (4): Classify the dynamics of k, drawing arrows (left and right)

This isocline has also divided the phase plane into two regions, one below the curve and the other
above it. We need to figure out in which of these two regions k is rising and in which it is falling.
Pick some point below the curve, like the point near the origin in the figure above. Compare this
point to the one directly above it on the curve. By construction the value of k is the same, but c is
lower at the point near the origin. Since k̇ is zero along the isocline, it must be positive at any point
below the curve. This should make intuitive sense. If consumption is relatively small compared
to the number of trees and hence the size of the harvest, then a lot of trees are being planted and
the number of trees must be growing. Similarly, if we look at a point above the curve, k̇ must be
negative and hence k is falling. In other words, if the level of consumption is very high, not enough
new trees are being planted to replace the trees that are dying, and the total number of trees on the
island will be decreasing. Adding these arrows to the diagram completes the figure above.

Now we have this diagram, and we need to figure out what it is telling us. Let’s start by looking at
the special points where the isoclines cross.

• Definition: A point (k∗, c∗) such that both k̇ and ċ are equal to zero is called a steady state.
(not an “equilibrium”)

I am going to insist on using this terminology throughout the course. I know that physicists and
mathematicians often use the word ‘equilibrium’ to refer to a point like (k∗, c∗), but to an economist
an equilibrium is something entirely different. We are going to use the word ‘equilibrium’ very
soon, and it is critical that we not confuse an (economic) equilibrium with a steady state. Therefore
the point (k∗, c∗) is, for us, a steady state.

Steady states are important points because (i) they are easy to find and (ii) they may tell us
something useful about the long-run behavior of the system.

• Steady states in our diagram:

(k, c) = (0, 0)

=
¡
k, 0
¢

= (k∗, c∗)
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• (k∗, c∗) is the unique interior steady state.

By definition, if our island economy happens to start at a point that is a steady state, it will stay at
that point forever. Next we want to know what happens if the island economy starts somewhere
else in the diagram.

• Pick any point on the phase plane. There is a unique trajectory from that point that satisfies
the differential equations.

Given any starting point in the phase plane, the differential equations (1) and (2) tell us exactly
how the variables k and c will evolve over time. The word ‘trajectory’ refers to this path in the
phase plane. The figure below shows some trajectories from different starting points.

k

c
c = 0

k= 0

k*

c*

c = 0

Notice that the trajectories must “respect” the isoclines. That is, when a trajectory crosses the
isocline for k, it must be vertical (because k is neither rising nor falling at this point). Similarly,
when a trajectory crosses the isocline for c, it must be horizontal at that point.

• An interior steady state usually has two special trajectories called arms.

If the differential equations are linear, the arms are straight lines. If the equations are nonlinear,
like the ones we are studying here, the arms are curves. In our diagram, the arms are the only
trajectories that are connected to the steady state.

• Each arm can be either stable or unstable.

We are just going to use the arrows in our phase diagram to determine stability. If you wanted to
verify this rigorously, you would linearize the differential equations around the steady state, and
then find the eigenvalues of the Jacobian matrix. Each eigenvalue tells you the stability along one
of the arms: a negative number means stable and a positive number means unstable. If we did this
for our system of equations, we would find one negative and one positive eigenvalue.
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k

c
c = 0

k= 0

k*

c*

c = 0

• When one arm is stable and the other is unstable, the steady state is called a saddle point.7

If both arms are stable, the steady state is locally stable, and if both arms are unstable the steady
state is locally unstable. We will see some locally stable steady states later in the course, but for
now we will see a lot of saddle points. It is not a coincidence that we ended up with a saddle point
here; there are important economic reasons for this, which we will see very soon.

So far we have a diagram with many trajectories on it, all of which are solutions to our system of
differential equations. Our maximization problem only has one solution, though. We need to know
which trajectory on this diagram is actually the solution to our problem. Another way of saying
this is that we need to know the “initial conditions”; where does the optimal trajectory start?

Q: What do we know about the starting point (initial condition)?

A: Only k (0) = k0

We are given an initial value for k (t), but not for c (t) . The initial level of consumption is
something Crusoe can choose. We need to find a way of determining the correct value for c (0) .
This is the role of the transversality condition.

3.2 Transversality and feasibility

Recall that our system of differential equations is given by

ċ (t) = [f 0 (k (t))− δ − ρ] c (t)

k̇ (t) = f (k (t))− c (t)− δk (t)

with the initial condition
k (0) = k0.

7 The name “saddle point” comes from comparing our figure with the dynamics that would be generated by placing
a marble at various places on a horse saddle.
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The figure below is a cleaned-up version of the phase diagram, with some of the trajectories
removed to make things easier to see. We know the starting value for k, and we need to find
the starting value for c.

k

c
c = 0

k= 0

k*

  c*

c = 0
cH

cS
cL

k0 k

• Initial condition: We know that k (0) must start at k0. What should c (0) be?

The one piece of information we haven’t used is the Transversality condition. It is going to take
some work, but eventually this condition will tell us the optimal level of consumption at t = 0.

• TVC:
lim
t→∞

µ (t) k (t) = 0

• Intuition:

µ (t) = value of one tree
k (t) = number of trees

⇒
µ (t) k (t) = value of entire time t stock of trees

So the transversality condition says that the present value (measured at t = 0) of the stock of trees
must go to zero as t goes to infinity. To understand this condition better, let’s look at a finite-horizon
problem.

3.2.1 A finite-horizon problem

Suppose that instead of living on the island forever, Crusoe knows that he will be rescued on date
T, where T is some large number. In making his plans for the island, therefore, he will only care
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about what happens between dates zero and T. The optimal growth problem becomes:

max

Z T

0

u [c (t)] e−(ρ−n)tdt

subject to

k̇ (t) = f (k (t))− c (t)− (δ + n) k (t)

k (0) = k0 and
k (t) , c (t) ≥ 0 for all t ∈ [0, T ]

The Hamiltonian function and first-order conditions are exactly the same as those given above.
The only difference is in the transversality condition, which is now given by

µ (T ) k (T ) = 0.

This is very much like a complementary slackness condition in a static optimization problem. It
says that at time T, either there should be no trees left [k (T ) = 0] or trees should have no value
[µ (T ) = 0]. From first-order condition (a) we have

µ (T ) = u0 [c (T )] e−ρT > 0.

That is, the value of a tree at time T is positive, and therefore k (T ) = 0 must hold.8 In other
words, for the finite horizon case the transversality condition says that when Crusoe departs the
island, there should be no trees left. If there were trees left, it would have been possible for him to
consume more (and plant less) while he was on the island, which would have made him better off.

Looking at the phase diagram, then, we need to find the trajectory that satisfies k (0) = k0 and
k (T ) = 0. In the figure below, the trajectory from (k0, cT ) satisfies these two conditions.

k

c
c = 0

k= 0

k*

c = 0

cH
cT
cL

k0

8 We are assuming here, as in the analysis above, that investment is reversible. This means that when the date gets
very close to T , Crusoe is able to turn some of the existing trees back into coconuts and eat them. If we impose the
irreversibility constraint c (t) ≤ f (k (t)) , matters become more complicated. Because we are only trying to get some
intuition here, we will stick to the simpler case where investment is perfectly reversible.
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Notice that setting c (0) = cT is the only way for Crusoe to satisfy both the differential equations
and the transversality condition. If he initially chose a slightly higher level of consumption (like
cH in the figure), the trajectory dictated by the differential equations would cross the vertical axis
before time T, and hence would not be feasible. In other words, if he consumes too much at
t = 0, he will run out of trees too early. Conversely, if Crusoe chose an initial consumption level
slightly lower than cT (like cL in the figure), the trajectory will not reach the axis by time T and
the transversality condition will not be satisfied. In other words, if he consumes too little at t = 0,
he will have trees left over at time T, which is clearly not optimal. Only by choosing c (0) = cT
will he hit the “target” of k (T ) = 0. Therefore, the trajectory starting at (k0, cT ) is the solution to
the finite-horizon optimal growth problem.

3.2.2 Back to the infinite horizon

In our original problem, the Crusoe household will live on the island forever and, therefore, there
is no point in time when the stock of trees should be zero. Nevertheless, we still need to make sure
that they do not accumulate “too many” trees. As discussed above, the transversality condition
tells us that the period-zero value of the stock of trees should go to zero in the limit:

lim
t→∞

µ (t) k (t) = 0.

If this condition is not satisfied, Crusoe is consuming too little and planting too much (just like in
the finite case). Let’s use the first-order condition (a) to replace the variable µ (t) .

• For our problem (with n = 0):

(a): µ (t) =
1

c (t)
e−ρt

⇒ TVC: lim
t→∞

k (t)

c (t)
e−ρt = 0

Let’s pick some possible initial values for c and see if the resulting trajectories satisfy this
condition. Consider the phase diagram below.

k

c
c = 0

k= 0

k*

  c*

c = 0
cH

cS
cL

k0 k
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• Suppose c(0) = cL Does this trajectory look efficient?

• Then:

k (t) → constant
¡
k
¢

c (t) → 0

k (t)

c (t)
e−ρt → k

0

0
{this is a problem!}

Intuitively, this trajectory looks inefficient. Consumption is small (and goes to zero in the long
run) while the stock of trees is growing very large (up to k). However, when we evaluate the
transversality condition, we get a zero-over-zero problem because of the discounting term. So, we
have more work to do. We need to figure out whether c (t) or the discounting terms is going to
zero faster. To do this, we are going to look at a linear approximation of the function c (t) that is
valid in the limit.

• Note: near k we have

ċ (t)

c (t)
≈ f 0

¡
k
¢− δ − ρ {a constant}

We don’t know the function c (t). However, all we need to know is what happens in the limit as
t goes to infinity. So we can take a linear approximation to the function c (t) that is valid in this
limit.

• Therefore, near k we can say

c (t) ≈ be[f
0(k)−δ−ρ]t {where b is a constant of integration}

• Plug this into the TVC:

lim
t→∞

k (t)
e−ρt

c (t)
= k lim

t→∞
e−ρt

be[f
0(k)−δ−ρ]t

=
k

b
lim
t→∞

e[−ρ−f
0(k)+δ+ρ]t

=
k

b
lim
t→∞

e[δ−f
0(k)]t

This expression shows that the value of the limit depends crucially on the sign of
¡
δ − f 0

¡
k
¢¢

.

Q: What is the sign of
¡
δ − f 0

¡
k
¢¢
?

We know the answer to this question. Where is the marginal product of trees equal to δ? Recall
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that the equation for the isocline for k is

c = f (k)− δk.

The maximum of this isocline occurs where f 0 (k) is equal to δ. This maximum point obviously
lies to the left of k̄, and hence by diminishing returns we know that f 0

¡
k̄
¢

is less than δ.

A: Positive. Therefore,
lim
t→∞

e[δ−f
0(k)]t =∞

and the TVC is violated.

This means that the trajectory starting at (cL, k0) is not a solution to our dynamic optimization
problem. This was pretty hard to show . In the diagram the intuition is easier to see. For example,
the time path of consumption from cs looks clearly better than that from cL.

Result 1: The trajectory from any c (0) < cS violates the transversality condition.

• Now suppose c(0) = cH

This looks like a pretty good path: you get a lot of consumption. But something is wrong with it.
(What?)

• Recall the feasibility constraint:

k (t) , c (t) ≥ 0 for all t

From the phase diagram, we can see that the trajectory starting at (k0, cH) will eventually have
k (t) < 0 and therefore will violate the feasibility constraint.9

Result 2: The trajectory from any c (0) > cs violates the feasibility constraint.

There is now only one possibility left. Suppose c(0) = cS

• Transversality:
k(t)

c(t)
→ constant and e−ρt → 0

therefore

lim
t→∞

k(t)

c(t)
e−ρt = 0

⇒ TVC is satisfied.

9 To be more precise, we should verify that the picture is drawn correctly and that the trajectory does eventually
cross the axis. If the trajectory did not cross the axis, it must be the case that it is slowing down and asymptotically
approaching the axis. By continuity, this would imply that k̇ = 0 holds along the axis. However,

k̇ck=0 = f (0)− c− δ · 0 = −c 6= 0.
Therefore, the trajectory does not approach the axis; it crosses over the axis and hence is infeasible.
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Along this trajectory, the stock of trees on the island does not go to zero; it approaches the value k∗
in the long run. However, because of discounting, the utility value of this stock (measured at t = 0)
does go to zero as t goes to infinity, and hence the trajectory satisfies the transversality condition.

• Feasibility:

clearly k(t) ≥ 0 for all t
⇒ feasibility is satisfied

Result 3: The trajectory from (cs, k0) satisfies both transversality and feasibility.

Finally, we have our answer:

⇒ The solution to the optimal growth problem is the trajectory starting at (cs, k0).

I want to emphasize that this last statement is the solution to our problem. The phase diagram is
not the solution, because there are many trajectories on that diagram. Just drawing a phase diagram
does not tell Crusoe what to do. Completely solving the problem requires us to identify the one
trajectory that Crusoe and his family should follow.

3.3 Drawing time paths

We now have the solution in the phase diagram, but sometimes it will be more useful to draw the
solution in another way. Think back to the pictures I showed in the first class: we looked at the
graph of real output over time for a variety of economies. I want to draw the same types of pictures
for the Crusoe economy.

• Suppose k0 < k∗

• Want: time paths of k, y, and c

In other words, we want to draw the functions k, y, and c that solve the optimal growth problem.
In the phase diagram, we see that k starts at the level k0 and increases monotonically through time.
As t goes to infinity, the value of k approaches k∗. The time path of k therefore looks like the first
picture below.

To draw the time path of y, we only need to remember the intensive production function y (t) =
f (k (t)) . The function y must therefore start at y0 = f (k0) . As k grows over time, so does y. In
the long run, the value of y approaches y∗ = f (k∗) .

Finally, we can draw the time path of c in the same way. From the phase diagram, we see that c (t)
starts at cS and grows over time, approaching the value c∗ in the long run.

Notice that I have put the natural logarithm of each variable on the axis in these pictures, rather
than the variable itself. If I had not done this, and instead put k, y, and c on these axes, the pictures
would look qualitatively the same. However, this will not always be true, and for consistency I will
always use the logs of variables when we draw time paths.
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These time paths give us the solution of the model. The time path for c is the plan that we should
write down and give to Crusoe.

As the last part of this study of the Robinson Crusoe model, I want to do some exercises.

4 Comparative Dynamics Exercises

Now that we have the solution to our problem, we might want to ask how the solution would
change if something about the environment the Crusoe household lives in were different. For
example, suppose Crusoe was less patient. How would the optimal path of consumption change?

This is a standard type of exercise in economics. For example, if you have supply and demand
curves for some good, you might ask how much the equilibrium price would change if the demand
curve shifted up by x%. This is called a comparative statics exercise. What we want to do is very
much in the same spirit, but we want to trace out the change in the solution to our problem over
the whole time period; this is why we call it comparative dynamics.

We will do a couple of exercises. The way an exercise works is the following. We want to compare
two different worlds, one in which (say) the Crusoe household is fairly patient and one in which
they are more impatient. We do this by drawing the phase diagrams and the time paths for the two
different solutions, and seeing how they compare.

• Begin with a baseline case (the model we just solved)
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• Draw the phase diagram

• Suppose that k0 = k∗ (that is, we start at the steady state of the baseline case)

This is just to make it easier to “see” the answer. If we start at the steady state, we know that we
will stay there. So the time paths for the baseline case will all be flat lines.

• The modified case differs in one (or more) parameters. Example: ρ0 > ρ

• Draw the modified phase diagram, indicating clearly what has changed

• Find the appropriate initial condition (the starting level for k will be the same, but the
starting level for c may be different)

I want to think about this exercise in the following way. We are comparing two separate worlds,
one where the household is fairly patient and one where the household is less patient. Everything
else is the same. We want to see how the optimal consumption plans in these two different worlds
compare.

• Goal: Draw the time paths of k and c for both cases

4.1 Different levels of impatience

• Modified case has ρ0 > ρ

The baseline phase diagram is on the left in the figure below. What does the modified phase
diagram (with a larger value of ρ) look like?

• Isocline for k :
k̇ = 0 ⇒ c = f (k)− δk

• no change

• Isocline for c :

ċ = 0 ⇒ f 0 (k∗) = δ + ρ0

⇒ f 0 (k∗) is larger
⇒ k∗ is smaller {moves to k∗∗}

• isocline for c shifts to the left

The panel on the right side of the figure below shows the phase diagram for the modified case,
where the vertical isocline for c is shifted to the left. The modified steady state is at (k∗∗, c∗∗) ,
where both consumption and the stock of trees is smaller than in the baseline steady state.
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What is the optimal trajectory in the modified case? The initial stock of trees is equal to the baseline
steady-state level k∗. What about the initial level of consumption? Is it equal to c∗?

NO! The level of c must adjust to put the economy on the stable arm of the saddle point for
the modified case. The optimal level of c (0) in this case is therefore the value cS shown in the
figure, which is bigger than c∗. If Crusoe instead set c (0) = c∗, he would end up violating the
transversality condition. The solution to the (modified) optimal growth problem starts at cS.

We can use these phase diagrams to draw the time paths of k and c.

• Time paths of k and c

ln(k)

t

ln(k*)

ln(k**)

baseline

modified

ln(c)

t

ln(c*)

ln(c**)

baseline

modified

ln(cs)

00

The results here are not surprising. If the household is less patient, they should consume more
today, which implies planting fewer trees and consuming less in the future.

4.2 Different depreciation rates

• Another exercise: δ0 < δ

Comparative dynamics exercises are not always so easy. Suppose we compare our baseline
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environment with one where trees die less often. Before we draw anything, let me ask a question:
How do you expect the initial level of consumption to be different between the baseline and the
modified cases? If trees live longer, should the household initially consume more or plant more?
Think about it for a minute.

Now let’s go through the same steps as before. First, we draw the baseline phase diagram, and then
the modified phase diagram, showing what has changed.

k

c
c = 0

k= 0

k*

c*

k

c
c = 0

k**

c**

k= 0

cs

• Isocline for k :
k̇ = 0 ⇒ c = f (k)− δ0k

• the isocline for k rotates upward

• the distance between the baseline and modified isoclines is (δ − δ0)k

• Isocline for c :

ċ = 0 ⇒ f 0 (k∗) = δ0 + ρ

⇒ f 0 (k∗) is smaller
⇒ k∗ is larger {moves to k∗∗}

• isocline for c shifts to the right

Here it is possible to draw the stable arm of the saddle point for the modified case so that it
passes either above or below the baseline steady state at (k∗, c∗). In other words, consumption may
initially be either higher or lower than in the baseline case. Why? How do we know which of the
two stable arms in the figure above is the correct one?

The fact that the modified stable arm can be drawn on either side of c∗ indicates that there are two
opposing effects at work.

• Substitution effect: lower δ makes future consumption less expensive (relative to current
consumption)⇒ consume less today (and more in the future)
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• Income effect: lower δ makes household “richer”⇒ consume more today (and more in the
future)

In fact, we can see these two effects in the shifts of the isoclines discussed above. The isocline for
k reflects the resource constraint. A lower value of δ implies that net output is higher at t = 0 in
the modified case, which is what rotates the isocline for k upward. Having more net output tends
to increase both consumption and planting; this is the income effect.

The isocline for c reflects the optimal consumption-planting decision. A lower value of δ makes
trees more valuable (because they die less often), and this shifts the isocline for c to the right.
Making trees more valuable tends to make Crusoe want to consume less and plant more; this is the
income effect.

Depending on the specific parameter values, either of these effects may dominate. For this exercise,
we will

• Assume substitution effect dominates.

Then the time paths look like the following:
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We will do comparative dynamics exercises like these throughout the course, because they allow
us to clearly trace out the predictions of the model. Working through such exercises also forces
you to think about all of the elements of the model and how they fit together; for this reason your
problem sets (and exams) will contain many exercises of this type.

At this point, we (should) understand very well the optimal way for a family living on a deserted
island eating only coconuts to behave. The next question is how this analysis relates to modern,
market-based economies and the growth of nations. In the next few classes, we will write down
a simple model of a market-based economy, and we will investigate the relationship between that
model and the results we have derived here.
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